Object Oriented Modeling and Design 15CS55

Module 1: INTRODUCTION, MODELING CONCEPTS, CLASS
MODELING:

Syllabus ---7Thr

* What is object orientation?

* What is oo development?

* Oo themes

» Evidence for usefulness of oo development
* Oo0 modeling history

* Modeling

+ Abstraction

* The tree models

» Objects and class concepts

» Link and association concepts
* Generalization and inheritance
* A sample class model

» Navigation of class models

* Practical tips

INTRODUCTION
Note 1:
Intention of this subject (object oriented modeling and design) is to learn how to apply
object -oriented concepts to all the stages of the software development life cycle.
Note 2:
Object-oriented modeling and design is a way of thinking about problems using
models organized around real world concepts. The fundamental construct is the object,
which combines both data structure and behavior.
WHAT IS OBJECT ORIENTATION?
Definition: OO means that we organize software as a collection of discrete objects
(that incorporate both data structure and behavior).
There are fouraspects (characteristics) required by an OO approacho
Identity.

o Classification.

e Inheritance.

e Polymorphism.

Identity:
e ldentity means that data is quantized into discrete, distinguishable entities
called objects.
e E.g. for objects: personal computer, bicycle, queen in chess etc.

Dept. of CSE Page 4



Object Oriented Modeling and Design 15CS55

e Objects can be concrete (such as a file in a file system) or conceptual (such as
scheduling policy in a multiprocessing OS). Each object has its own inherent identity.
(i.e two objects are distinct even if all their attribute values are identical).

e In programming languages, an object is referenced by a unique handle.

Classification:

e Classification means that objects with the same data structure (attribute) and
behavior (operations) are grouped into a class.

e E.g. paragraph, monitor, chess piece.

e Each object is said to be an instance of its class.

e Fig below shows objects and classes: Each class describes a possibly infinite
set of individual objects.

Eg
Po_}non class:
Arribuces-
-vertices,
abstract border class.
_—b' fill color.
into
Operations-
«draw.
-erase.
-move
Bycycle class:
Aftributes-
- frame size
-wheel size
no. of gears
i -material
Operations-
. -shift
-move
-repair
Inheritance:

e Itis the sharing of attributes and operations (features) among classes based on
a hierarchical relationship. A super class has general information that sub classes
refine and elaborate.

e E.g. Scrolling window and fixed window are sub classes of window.

Polymorphism:

e Polymorphism means that the same operation may behave differently for
different classes.

e For E.g. move operation behaves differently for a pawn than for the queen in
a chess game.

Dept. of CSE, Page 5



Object Oriented Modeling and Design 15CS55

Note: An operation is a procedure/transformation that an object performs or is
subjected to. An implementation of an operation by a specific class is called a method.
WHAT IS OO DEVELOPMENT?

Object-Oriented Development =

e —
< I

7 Object-Crientad \‘)
Q Analysis (OOA)

>
2 S

+

- .

P : B
( Okject-Oriented ‘~’
. Designioop)
~ -
\ -

L
_ \\
( Okbject-Oriented ™
. Pragramming (OOP)

NS

-
7

Figure 1-2  Object-oriented development

Development refers to the software life cycle: Analysis, Design and Implementation.
The essence of OO Development is the identification and organization of application
concepts, rather than their final representation in a programming language. It’s a
conceptual process independent of programming languages. OO development is
fundamentally a way of thinking and not a programming technique.

OO methodology

Here we present a process for OO development and a graphical notation for
representing OO concepts. The process consists of building a model of an application
and then adding details to it during design.

The methodology has the following stages

e System conception: Software development begins with business analysis or
users conceiving an application and formulating tentative requirements.

e Analysis: The analyst scrutinizes and rigorously restates the requirements
from the system conception by constructing models. The analysis model is a concise,
precise abstraction of what the desired system must do, not how it will be done.

e The analysis model has two parts-

Dept. of CSE. Page 6



Object Oriented Modeling and Design 15CS55

e Domain Model- a description of real world objects reflected within the
system.

e Application Model- a description of parts of the application system itself
that are visible to the user.

e E.g. In case of stock broker application-

e Domain objects may include- stock, bond, trade & commission.

e Application objects might control the execution of trades and present the
results.

e System Design: The development teams devise a high-level strategy- The
System Architecture- for solving the application problem. The system designer should
decide what performance characteristics to optimize, chose a strategy of attacking the
problem, and make tentative resource allocations.

e Class Design: The class designer adds details to the analysis model in
accordance with the system design strategy. His focus is the data structures and
algorithms needed to implement each class.

e Implementation: Implementers translate the classes and relationships
developed during class design into a particular programming language, database or
hardware. During implementation, it is important to follow good software engineering
practice.

Three models

We use three kinds of models to describe a system from different view points.

1. Class Model—for the objects in the system & their relationships.

It describes the static structure of the objects in the system and their
relationships.

Class model contains class diagrams- a graph whose nodes are classes and arcs
are relationships among the classes.

2. State model—for the life history of objects.

It describes the aspects of an object that change over time. It specifies and
implements control with state diagrams-a graph whose nodes are states and whose arcs
are transition between states caused by events.

3. Interaction Model—for the interaction among objects.

It describes how the objects in the system co-operate to achieve broader results.
This model starts with use cases that are then elaborated with sequence and activity
diagrams.

Use case — focuses on functionality of a system — i.e what a system does for
users.

Sequence diagrams — shows the object that interact and the time sequence of their
interactions.
Activity diagrams — elaborates important processing steps.

OO THEMES

Dept. of CSE. Page 7



Object Oriented Modeling and Design 15CS55

Several themes pervade OO technology. Few are —
1. Abstraction

» Abstraction lets you focus on essential aspects of an application while ignoring
details i.e focusing on what an object is and does, before deciding how to implement
it.

» It’s the most important skill required for OO development.

2. Encapsulation (information hiding)

> It separates the external aspects of an object (that are accessible to other
objects) from the internal implementation details (that are hidden from other objects)

» Encapsulation prevents portions of a program from becoming so
interdependent that a small change has massive ripple effects.

3. Combining data and behavior

» Caller of an operation need not consider how many implementations exist.

» In OO system the data structure hierarchy matches the operation inheritance

» hierarchy (fig).

A

data seruceurs hierarchy

A

procedure hicrarchy

/

Is veplaced widh =l

¢lass hler archy

\

old approach QO approach

4. Sharing
e 0O techniques provide sharing at different levels.

e Inheritance of both data structure and behavior lets sub classes share
common code.

e 0O development not only lets you share information within an application,
but also offers the prospect of reusing designs and code on future projects.

5. Emphasis on the essence of an object

e 0O development pl.s a greater emphasis on data structure and a lesser
emphasis on procedure structure than functional-decomposition methodologies.

6. Synergy

¢ Identity, classification, polymorphism and inheritance characterize OO
languages.

Dept. of CSE. Page 8



Object Oriented Modeling and Design 15CS55

e Each of these concepts can be used in isolation, but together they
complement each other synergistically.

MODELLING AS A DESIGN TECHNIQUE

Note: A model is an abstraction of something for the purpose of understanding it
before building it.

MODELLING

Designers build many kinds of models for various purposes before

constructing things.

Models serve several purposes—

» Testing a physical entity before building it: Medieval built scale models of
Gothic Cathedrals to test the forces on the structures. Engineers test scale models of
airplanes, cars and boats to improve their dynamics.

» Communication with customers: Architects and product designers build
models to show their customers (note: mock-ups are demonstration products that
imitate some of the external behavior of a system).

» Visualization: Storyboards of movies, TV shows and advertisements let
writers see how their ideas flow.

» Reduction of complexity: Models reduce complexity to understand directly
by separating out a small number of important things to do with at a time.

ABSTRACTION
Abstraction is the selective examination of certain aspects of a problem.

The goal of abstraction is to isolate those aspects that are important for some
purpose and suppress those aspects that are unimportant.

THE THREE MODELS

1. Class Model: represents the static, structural, “data” aspects of a system.

e It describes the structure of objects in a system- their identity, their
relationships to other objects, their attributes, and their operations.

e Goal in constructing class model is to capture those concepts from the real
world that are important to an application.

e Class diagrams express the class model.

2. State Model: represents the temporal, behavioral, “control” aspects of a
system.

e State model describes those aspects of objects concerned with time and the
sequencing of operations — events that mark changes, states that define the context for
events, and the organization of events and states.

e State diagram express the state model.

e Each state diagram shows the state and event sequences permitted in a system
for one class of objects.

o State diagram refer to the other models.




Dept. of CSE. Page 9



Object Oriented Modeling and Design 15CS55

e Actions and events in a state diagram become operations on objects in the class
model. References between state diagrams become interactions in the interaction
model.

3. Interaction model — represents the collaboration of individual objects, the
“Interaction” aspects of a system.

¢ Interaction model describes interactions between objects — how individual
objects collaborate to achieve the behavior of the system as a whole.

e The state and interaction models describe different aspects of behavior, and
you need both to describe behavior fully.

e Use cases, sequence diagrams and activity diagrams document the interaction
model.
CLASS MODELLING
Note: A class model captures the static structure of a system by characterizing the
objects in the system, the relationships between the objects, and the attributes and
operations for each class of objects.
OBJECT AND CLASS
CONCEPT Objects

Purpose of class modeling is todescribe objects.

Anobject is a concept, abstraction or thing with identity that has meaning for an
application.

Ex: Joe Smith, Infosys Company, process number 7648 and top window are objects.
Classes

An object is an instance or occurrence of a class.

Aclass describes a group of objects with the same properties (attributes), behavior
(operations), kinds of relationships and semantics.

Ex: Person, company, process and window are classes.

Note: All objects have identity and are distinguishable. Two apples with same color,
shape and texture are still individual apples: a person can eat one and then the other.
The term identity means that the objects are distinguished by their inherent existence
and not by descriptive properties that they may have.

Dept. of CSE. Page 10



Object Oriented Modeling and Design 15CS55

CLASS MODELLING

- OBJECT AND CLASS CONCEPT
« An object has three characteristics: state,

behavior and a unique identification. or
* An object is a concept, abstraction or

thing with identity that has meanmg for

an application. Eg: — s
* Note: The term | , f
identity means that (P i :
the objects are ,UM‘*l o | ﬁ
distinguished by their | %" § i
inherent existence
and not by descriptive
properties that they
may have.

Class diagrams

Class diagrams provide a graphic notation for modeling classes and their
relationships, thereby describing possible objects.

Note: An object diagram shows individual objects and their relationships.
Useful for documenting test cases and discussing examples.

Class diagrams are useful both for abstract modeling and for designing actual
programs.
Note: A class diagram corresponds to infinite set of object diagrams.

Figure below shows a class (left) and instances (right) described by it.

Person | JoeSmith:Person l‘ MarySharp: Person : :Person

Class Objects
Conventions used (UML):
e UML symbol for both classes and objects is box.

e Objects are modeled using box with object name followed by colon followed
by class name.

e Use boldf. to list class name, center the name in the box and capitalize the
first letter. Use singular nouns for names of classes.

e To run together multiword names (such as JoeSmith), separate the words
with

e intervening capital letter.

Values and Attributes:
Value is a piece of data.

Dept. of CSE. Page 11



Object Oriented Modeling and Design 15CS55

Attribute is a named property of a class that describes a value held by each object of
the class.

Following analogy holds:

Obiject is to class as value is to attribute.

E.g. Attributes: Name, bdate, weight.

Values: JoeSmith, 21 October 1983, 64. (Of person object).
Fig shows modeling notation

Person | JoeSmith:Person [ MarySharp:Person
name: string = | name="Joe Smith” ’ name="Mary Shamp”
birthdate: date birthdate=21 October 1983 | | birthdate=16 March 1950 |

s

——— -

.

Class with Aitribuies Objecis with Values

Conventions used (UML):

e List attributes in the 2nd compartment of the class box. Optional details (like
default value) may follow each attribute.

e A colon precedes the type, an equal sign precedes default value.

e Show attribute name in regular f., left align the name in the box and use
small case for the first letter.

Similarly we may also include attribute values in the 2nd compartment of
object boxes with same conventions.

Note: Do not list object identifiers; they are implicit in models.
E.g.

]

Perscn .~ | Person
peréonlD: - ]' ‘name: string
name: strin ! hirthdate: date :
birthdalp-date homeTelephoneNumber:string
ho elephoneNumbeﬁs&i\nE; : —
= Wrong Correct

An operation is a function or procedure that maybe applied to or by objects in a
class.

E.g. Hire, fire and pay dividend are operations on Class Company. Open, close, hide
and redisplay are operations on class window.

Amethod is the implementation of an operation for a class.

E.g. In class file, print is an operation you could implement different methods to
print files.

Note: Same operation may apply to many different classes. Such an operation is
polymorphic.

Fig shows modeling notation.




Dept. of CSE. Page 12



Object Oriented Modeling and Design 15CS55

ey

Person File . GeometricObject

name fileName | color
birthdate _‘ sizelnBytes position

TS stUpdate | T

| changeJob ‘ il — | move (delta:\/ecté:)r}l
changeAddress | print select {p : Point): Boolean

| ‘ SAALNEE ] rotate {in angle : float = 0.0)

UML conventions used —

e List operations in 3rd compartment of class box.

e List operation name in regular f., left align and use lower case for first
letter.

e Optional details like argument list and return type may follow each operation
name.

o Parenthesis enclose an argument list, commas separate the arguments. A
colon precedes the result type.

Note: We do not list operations for objects, because they do not vary among

objects of same class.
Summary of Notation for classes

S
ClassName

attributeName1 : dataTypel = dotau}t\«‘alum
attributeName2 : dataType2 = defauliValue2

e & @

operalioanahe1 (argumentList*l) : resultTypel
operationName?2 (argumentlist2) : resultType2

Fig: Summary of modeling notation for classes

direction argumentName : type = defaultvValue
Fig: Notation for an argument of an operation

Dept. of CSE. Page 13



Object Oriented Modeling and Design 15CS55

Class Digarms: Relationships

» Classes can related to each other
through different relationships:

— Dependency [ClassT]--w-e--- {Class? ]|
— Association (delegation)  Classl [
— Generalization (inheritance)| Base <t+— sub |
— Realization (interf.s) | Base <3[ sub |

1) Dependency: A Uses Relationship

» Dependencies
— occurs when one object depends on another

— if you change one object's interf., you
need to change the dependent object

— arrow points from dependent to needed

objects
'_MM CardReader
Hx\xCDcmmmmn
4 SongSelector

2)Association: Structural Relationship

‘Jukebox

= Association

— a relationship between classes indicates some
meaningful and interesting connection

— Can lahel associations with a hyphen connected
verb phrase which reads well between concepts

Dept. of CSE. Page 14



Object Oriented Modeling and Design 15CS55

association

association name
| Class 1 } { ass 2 I

if association name is replaced with “owns>",
it would read “Class 1 owns Class 2”

LINK AND ASSOCIATION CONCEPTS

Note: Links and associations are the means for establishing relationships among
objects and classes.

Links and associations

Alink is a physical or conceptual connection among objects.
E.g. JoeSmith WorksFor Simplex Company.
Mathematically, we define a link as a tuple— that is, a list of objects.

A link is an instance of anassociation.

Anassociation is a description of a group of links with common structure and
common semantics.

E.g. a person WorksFor a company.
An association describes a set of potential links in the same way that a class
describes a set of potential objects.
Fig shows many-to-many association (model for a financial application).

F&:sgn QunsStock i Company
{ s LRESs &5

—_— e "
| name : name

"lasy diagram .

Jgh}i:l;er:;an

name="Joha® |-

Mary:Peizon ——— GE:Company
name="Tdan" ———— name="GE"

SusPerson | epccompany |

namef"Sue“ '. © ——{ namc="IBM* !

'
bject dingram ¢

‘ Allce: Pe;:_o'fn
name-"Alice"

[ Jefi:-Person

| S——
names="Jeff"

Conventions used (UML):

Link is a line between objects; a line may consist of several line segments.
If the link has the name, it is underlined.

Association connects related classes and is also denoted by a line.

Show link and association names in italics.

Note:




Dept. of CSE. Page 15



Object Oriented Modeling and Design 15CS55

e Association name is optional, if the model is unambiguous. Ambiguity arises
when a model has multiple associations among same classes.

e Developers often implement associations in programming languages as
references from one object to another. A reference is an attribute in one object that
refers to another object.

Association Relationships

We can specily dnal associalions.
rI’xA.\'.VH.'J (Uin')’i
A E
av thar Associadi ov
Member of
1.t L
Studant Team

1 Presicdent of 1%

Class Diagrams (cont)

« Tyoes nt assndlatlors Aggreqation (has-a)

lam M
Rinay >
Fesn ] ) Foard
carmpnsition (Is-enmpnsed-nf)
[ 3 upe
.
n ary
/'\, o s
Sindt ST SN ¢ CranxalizAdinn (is-a-kiml-nl)
— -
il = T
[ k.
e 3

Dept. of CSE. Page 16



Object Oriented Modeling and Design 15CS55

Class Diagrams {cont)

wdctatvpes
Hi ren Reanirees
3
!
Nependency Redlizatinn 1
Projet —
— rrs | e
: e
Project Manager _____j
-----.' Cyd-rid.?;r-mﬁi;t'dor
i_—-—--— Team = \»}___
Cliss suppor s all
The source class aperatizns of ta-get cl=ss
depends on (uses) but not all attrizuzes or
the target class asscciations.
Multiplicity

Multiplicity specifies the number of instances of one class that may relate to a single
instance of an associated class. Multiplicity constrains the number of related objects.
UML conventions:

o UML diagrams explicitly lists multiplicity at the ends of association lines.
e UML specifies multiplicity with an interval, such as
“1” (exactly one).
“1..”(one or more).
“3..5”(three to five, inclusive).

6k 9

( many, i.e zero or more).

* notations
L[ glass  exactlyone
o many
0.x Class (zero or more)
01 optional
_ Class (zero or one)
numerically
MM ass  Specified
Example: — (m to n, inclucive)
0.*
Course CourseOffering
1

Dept. of CSE. Page 17



Object Oriented Modeling and Design 15CS55

Previous figure illustrates many-to-many multiplicity. Below figure
illustrates one-to-one multiplicity.

[ | Country | HgaCapia) CapitalCity
Sews diagram L 1

name name

| [ Cansde:Country | pasCapial | Ottawa:CapitaiCity
name=“Canada"_J I name="Ottawa"

name="France” name="Paris" {

1

. France:Country HasCapital Paris:CapitalCity ]
W diagram 4, .

| Senegal:Country | HasGapital | Dekar:CapitalClty
narre-"Senegal’J name="Dzkar"

Below figure illustrates zero-or-one multiplicity.

r—" RN 1.1 3
Workstation | e Window
Note 1: Association vs Link.
| anAsacciation T niah oAbk L ﬂ
e T PRE D e
% pr— — e —— ‘
‘Clays divgram Object disgram

Figure 3.1} Assocization vs. link. A pair of ohjects can he instantizzed ac
ranst once per association (except for bags snd saquences),

— anAegociation e - alink o=t
e 3 rm'}—_ —{ amm |
L% anoterassociation ¥*L— - gnotherlink !

Class diapram Obfect diagrum

Figare 311 Association v, lmk. You canuse multiple ussociations
ruxlel multiple links betwean the same objects.

Dept. of CSE. Page 18



Object Oriented Modeling and Design 15CS55

Multiplicity of Associations
* Many-to-one
— Bank has many ATMs, ATM knows only 1 bank

= P & o |

* One-to-many
— Inventory has many items, items know 1 inventory

Inventory Item
name: Eleiag
ser 2 1Num: Steing
=i vasc Lzsn:TlunL )
deslelel) cvnid leemtian: String
i fyrll void cepaTtment s5TrIng

Tozatell - lten

Association - Multiplicity

» ASludent caniake up to five Courses.

» Shudent hasto be enrdled in at least one course.
« Utz 300 sludents can enroll in a course.

« Aclass should have at least 10 students.

Student Course
H0..30D Takes» 2%

Dept. of CSE. Page 19



Object Oriented Modeling and Design 15CS55

Association - Multiplicityli ity
* Ateacher teaches 1 to 3 courses (subjects)
» Each course is taught by only one teacher.
* A student can take between 1 to 5 courses.
» A course can have 10 to 300 students.

1 Teaches » 1..3
Teacher Course

1..5

Students akes»

10..300

Multiplicity

+ Multiplicity defines how many instances
of iype A can be associated with one
instance of type B at some point

Game Player

1 2.6
Mother Child

1 1+

erforms-in . Actor 15 assodated
Ador f—F - Film | with 0 to reny films
& filmis associated
can label associations with 0 to rrany actors

Dept. of CSE. Page 20



Object Oriented Modeling and Design 15CS55

Course | o Teaches Professor
_narme
_schedlie 0r 0+ g‘f_‘nmf e
-term PRI
1.5 &
I8
offers
gy ¥
_name 1is chair
1 1

MULTIPLICITIES IN ASSOCIATIONS

min.max notation |0.* | related to zero or more objects

(related to at 0..1 related to no object or at most one object
least min 1.* | related to at least one object

objects and 1.1 | related to exactly one object.

at most max 1.5 related to at least three objects and at
objects) most five objects

short hand 1 sameas 1.1

notation . sameas 0.

Note 2: Multiplicity vs Cardinality.
e Multiplicity is a constraint on the size of a collection.
e Cardinality is a count of elements that are actually in a
collection. Therefore, multiplicity is a constraint on cardinality.
Note 3: The literature often describes multiplicity as being “one” or “many”,

but more generally it is a subset of the non negative numbers.

Association end names

Multiplicity implicitly refers to the ends of associations. For E.g. A one-to-
many association has two ends —

e an end with a multiplicity of “one”

e an end with a multiplicity of “many”
You can not only assign a multiplicity to an association end, but you can give it a
name as well.

Dept. of CSE. Page 21



Object Oriented Modeling and Design 15CS55

5 employee amplayer Compa n;
erson |- - s
* WaorksFor 0.1

employee  employer

Joe Doe Simplex

Mary Brown Simplex
Jean Smith  United Widgets

Assueiation end names, Each end of an association can have a name.

A person is an employee with respect to company.
A company is an employer with respect to a person.
Note 1: Association end names are optional.

Note 2: Association end names are necessary for associations between two objects
of the same class. They can also distinguish multiple associations between a pair of
classes.

E.g. each directory has exactly one user who is an owner and many users who are
authorized to use the directory. When there is only a single association between a pair
of distinct classes, the names of the classes often suffice, and you may omit association

end names.
SRR T, =
OW“”[ I :’ 0..1‘\20ntainer
i User Directory
: B %7 %|contents J
authorizedUser | ¥ s #* ot

Note 3: Association end names let you unify multiple references to the same class.
When constructing class diagrams you should properly use association end names and
not introduce a separate class for each reference as below fig shows.

PN, t
| Perzon L?%n

childl# '
I

S

M —

Cuorrect model

N — —

-

Wrong model

Sometimes, the objects on a “many” association end have an explicit order.
E.g. Workstation screen containing a number of overlapping windows. Each window
on a screen occurs at most once. The windows have explicit order so only the top most
windows are visible at any point on the screen.

Ordering is an inherent part of association. You can indicate an ordered set of
objects by writing “{ordered}” next to the appropriate association end.

Dept. of CSE. Page 22



Object Oriented Modeling and Design 15CS55

1

ordered} 2
{ = = Window '
1 VisibleOn “

Screen

Fig: ordering sometimes occurs for “many” multiplicity
Bags and Sequences

Normally, a binary association has at most one link for a pair of objects.

However, you can permitmultiple links for a pair of objects by annotating an
association end with {bag} or {sequence}.

Abag is a collection of elements with duplicates allowed.

Asequence is an ordered collection of elements with duplicates allowed.
Example:

s and [sequence}
linerary — = Alrportl

[ sadai— s )
fig: an itinerary may visit multiple airports, so you should use {sequence} and

not {ordered}

Note: {ordered} and {sequence} annotations are same, except that the first disallows
duplicates and the other allows them.

Association classes

Anassociation class is an association that is also a class.

Like the links of an association, the instances of an association class derive identity
from instances of the constituent classes.

Like a class, an association class can have attributes and operations and participate in
associations.

Ex:

Fne_ J—— P, - { user.‘

[ AccessxbleBy B

accessParmission _!

John Doe
jetcitermcap ;ggg-wnte Mary Brown

mca |
'ﬁtscr';tr?oe; Iogm read-write John Doe

UML notation for association class is a box attached to the association by a dashed
line.

Note: Attributes for association class unmistakably belong to the link and cannot be
ascribed to either object. In the above figure, accessPermission is a joint property of
File and user cannot be attached to either file or user alone without losing information.

Dept. of CSE. Page 23



Object Oriented Modeling and Design 15CS55

Below figure presents attributes for two one-to-many relationships. Each person

working for a company receives a salary and has job title. The boss evaluates the
performance of each worker. Attributes may also occur for one-to-one associations.

\)lf_’__—

r_Pearson‘ |‘—— —— = Company J
— 1 | name
name WorksFor ; ‘
boss | hithDate ' ll;—l—-{ |dddl‘0;$i_‘
0.1 address salary
L — 1obTme J
ManagesL | worker [ AR
N,
PN, eeta S
i'perfﬂ'ﬂanceFlatmq_j

Note 1: Figure shows how it’s poss1b1e to fold attributes for one-to-one and one-to-
many associations into the class opposite a “one” end. This is not possible for many-
to-many associations.

As a rule, you should not fold such attributes into a class because the multiplicity of
the association may change.

{ e e Bz e §
[ Person |

s : 0.1 Company
Perierred J.} name | name
S birthDate % WarksFor address
address | salary
e jobTitle

WorksFor 0.1 Ty ‘
= o ) l';ame —-'ql
e hirthDate address {

- address

£ 3 %! ;
User T ] Workstation
Authorization
priority homeDirectory [ o, |
privileges - - Directory |
startSession

Note 3: Association class vs ordinary class.

Dept. of CSE. Page 24



Object Oriented Modeling and Design 15CS55

{_ Pgraon : Company
maeiation I‘—— # H %
7Rl ~ name Ownm name
gdsss s . S
guantity
| Person | Purchase Company
s e e S 1
ZLRary g e
s ~< | hame quantity name
ess —_— date :
cost

eg:

* employer
L Person T 0.1 Company

Emplayvment

perivdidatelange

Figure 6-14: Assoniation Class

/femployer
*
0..1
: Employment == B
l D..l = * 1
— Company

Person | —————— period : datcRange

|

Quialified associations

A Qualified Association is an association in which an attribute called the qualifier

disambiguates the objects for a “many” association ends. It is possible to define
qualifiers for one-to-many and many-to-many associations.

A qualifier selects among the target objects, reducing the effective multiplicity
from “many” to “one”.

Ex 1: qualifier for associations with one to many multiplicity. A bank services
multiple accounts. An account belongs to single bank. Within the context of a bank,
the Account Number specifies a unique account. Bank and account are classes, and
Account Number is a qualifier. Qualification reduces effective multiplicity of this
association from one-to-many to one-to-one.

Dept. of CSE. Page 25



Object Oriented Modeling and Design

15CS55

r'-Bank }accouthumbej- e I_A

= |

(J:wlzﬁed

-

ceount |

3 " Account

[—Bank ‘-— —1 accountNumber_‘

e

-

T

Not qaahﬁed

Fig: qualification increases the precision of a model. (note: however, both are

acceptable)

Ex 2: a stock exchange lists many companies. However, it lists only one company
with a given ticker symbol. A company maybe listed on many stock exchanges,

possibly under different symbols.

StockExchange

| tickerSymbol l

e

Lists
0.1

Company ‘

oV

Qualified

StockExchange

¥

™ tickerSymbol
Company

Lists |-

Not qu'ahﬁed

Eq 3: Qualified Association

|

‘ P-oduct

(a) Froduct Contains
Catalog ‘ 1 4+ Description
1 3 1
(0) PfOEUCI temiD Contains ‘ Proqm
Calclog \ ‘ Description
qualifier l mullilicity reduoed to 1 l
eg 4:

Dept. of CSE.

Page 26



Object Oriented Modeling and Design 15CS55

|
|
|
1 L. —_
Array index—— Arrayvalue
T = o
| I
] |
| T
| |
(BN Ilﬂ
gualified object et 7t ]
= Lal ycu UIJJCLL|
|

GENERALIZATION AND INHERITANCE

Generalization is the relationship between a class (the superclass) and one or more
variations of the class (the subclasses). Generalization organizes classes by their
similarities and differences, structuring the description of objects.

The superclass holds ~ common attributes, operations and associations; the

subclasses add specific attributes, operations and associations. Each subclass is said
to inherit the features of its superclass.

There can bemultiple levels of generalization.

Fig(a) and Fig(b) (given in the following page) shows examples of generalization.

Fig(a) — Example of generalization for equipment.

Each object inherits features from one class at each level of generalization.

UML convention used:

Use large hollow arrowhead to denote generalization. The arrowhead points to
superclass.

Fig(b) — inheritance for graphic figures.
The word written next to the generalization line in the diagram (i.e dimensionality) is
a generalization set name. A generalization set name is an enumerated attribute that
indicates which aspect of an object is being abstracted by a particular generalization.
It is optional.

Dept. of CSE. Page 27



15CS55

Object Oriented Modeling and Design
, Equipment
! nzr};a [Note: Tha listing of equipmant,
manutacturer sumps, and tanks is incomplete.}
weight
| cost |
e
[ I S ==
Pump HeatExchanger Tank
suctionPressure surfaceArea volume
dischargePressure tubeDiameter pressure
flowRate tubelLength AN
75 tubePressure ra
sheliPressure
i = | |
CentrifugalPump DlaphragmPump | PlungerPump
impellerDiameles digphragmMaterial | | plungerLength
numberQfBlades plungerDiameter ;
axisQlRolaton | numberOfCylinders {
P b |
[ Loy bios oty o il 35
SpherlcaiTank [—PressunzodT ank FloatingRoofTank
diameter diameter | diameter
haight | height
P11 :DiaphragmPump nger T111:FioatingRoofTank
name = ‘P101” name = “E3(2" name =“T111"
manufacturer = “Simplex” manufacturer = “Brown® | | manufacturer = “Simplex”
weight = 100 kg weight = 5000 kg { | weght= 10000 kg
cost = $5000 cost = $200C0 | | cost = 850000
suctionPres = 1.1 atm surfaceArea = 300 m | volume = 400000 liter
dischargePres = 3.3 atm tubeDiameter = 2 cm | pressure = 1.1 atm

flowRate = 300 l/hr
diaphragmbat! = Teflon

Fig(a)

Dept. of CSE.

tubelength=6m
tubePressure = 15 atim
shellPressurs = 1.7 atni

diameter=8m
] height =9 m

Page 28



Object Oriented Modeling and Design 15CS55
Figure |
color
ey * centerPosition
Dlagram—“ | penThickness
- —‘ | ponType
name
L move
select
rc_;tatie
| disp ay\ o
l[ dimensionality ;
[ =
Zerolimenslonal . ! Oneblmensaoné_] -‘ TwoDaqﬁ?nswnal
iy ‘ orientation
‘ onenta’non ‘—' S
i scale T Wl
scale o
IR ~ /’T AN
i o Lﬁ 1
Pomt l I—Lme ' Arc Spllne _1 l Polygon | Clrcle '
Er endPoints ’:adlus controlPt numQOiSides | dnameter l
—— = startAngle | o vemces display
ssplay | |display | | arcAngle |_‘3P ay | Ibpgay j e
. \ display . —
Fig (b)

‘move’, ‘select’, ‘rotate’, and ‘display’ are operations that all subclasses inherit.
‘scale’ applies to one-dimensional and two-dimensional figures.

“fill” applies only to two-dimensional figures.

Use of generalization: Generalization has three purposes —

1. Tosupport polymorphism: You can call an operation at the superclass level,
and the OO language complier automatically resolves the call to the method that

matches the calling object’s class.

2. To structure the description of objects: i.e to frame a taxonomy and
organizing objects on the basis of their similarities and differences.

3. Toenable reuse of code: Reuse is more productive than repeatedly writing

code from scratch.

Note: The terms generalization, specialization and inheritance all refer to aspects of

the same idea.
Overriding features

A subclass may override a superclass feature by defining a feature with the

same name. The overriding feature (subclass feature) refines and repl.s the

overridden feature (superclass feature) .

Why override feature?
¢ To specify behavior that depends on subclass. e
To tighten the specification of a feature.

Dept. of CSE.

Page 29



Object Oriented Modeling and Design 15CS55

e To improve performance.

In fig(b) (previous page) each leaf subclasses had overridden ‘display’

feature. Note: You may override methods and default values of attributes. You

should never override the signature, or form of a feature.
A SAMPLE CLASS MODEL

Window '
| xi
oyt
| »2
y2 4\
display
Jnd|splay
raise
lower X
| L—_ﬁ;j
[ nd B —Carwas—-' | Panel |
scromngwmdovﬂ | | 23
o | [emNama |
| Jonest ort |
yOﬁsE_.__—-_: o2 |
l_scto'l | cy2 1 | ‘IE;‘?
'\ addtlement l el
J dele!eElemem || __.—I -m'if;l:ve—ﬁlm =
l i 1 windaw &3) e l::_l,
\ & glomants Panalhemj kayboardEven:
| | Shaps | S
Yo v |
“color ! _
| | Tmewichn | tiibe_ il \

l__/r:_ B
‘ ld:\_ L b

o R - =) 77 Texitem |
— 1 Choice |
rTm ,r'iromngl [ Cine | [ Glosed Bu—“«of-—l‘ ttem | T—iar

Jaxl angth
window | | Canvas x | Shape string i rcruar)r(enlsgtrhg
P T FllColor depressed| - ¢ | —=——
suing | |IPFﬂD"n £ =l ="
: y2 [ —— |tsubsc;:
mseer‘l ot <
coraw S
Lo = ’ curren Ch..u e 1 *ll €N0IRRE
r—— 1
el 2 — | —“lp—se—. [ChaiceEntry |
— V8 — | ———
] Folnt ﬂom-‘_ ]_ o_yg_o L—— —' . slring l
7 drawr 5 e
X [oraer | i ===
¥ 2 =
L',_ . [ S
ol B8

NAVIGATION OF CLASS MODELS

Class models are useful for more than just data structure. In particular,

navigation of class model lets you express certain behavior. Furthermore, navigation

exercises a class model and uncovers hidden flaws and omission, which you can then
repair.

UML incorporates a language that can be used for navigation, the object
constraint language(OCL).

OCL constructs for traversing class models




Dept. of CSE. Page 30



Object Oriented Modeling and Design 15CS55

OCL can traverse the constructs in class models.

1. Attributes: You can traverse from an object to an attribute value.

Syntax: source object followed by dot and then attribute name.

Ex: aCreditCardAccount.maximumcredit

2. Operations: You can also invoke an operation for an object or collection of
objects. Syntax: source object or object collection, followed by dot and then the
operation followed by parenthesis even if it has no arguments. OCL has special
operations that operate on entire collections (as opposed to operating on each object
in a collection). Syntax for collection operation is: source object collection followed
by “->”, followed by the operation.

3. Simple associations: Dot notation is also used to traverse an association to a
target end. Target end maybe indicated by an association end name, or class name (if
there is no ambiguity).

Ex: refer fig in next page.

» aCustomer.MailingAddress yields a set of addresses for a customer ( the
target end has “many” multiplicity).

» aCreditCardAccount.MailingAddress yields a single address( the target
end has multiplicity of “one”).

4. Qualified associations: The expression aCreditCardAccount.Statement [30
November 1999] finds the statement for a credit card account with the statement date
of November 1999. The syntax is to enclose the qualifier value in brackets.

5. Associations classes: Given a link of an association class, you can find the
constituent objects and vice versa.

6. Generalization: Traversal of a generalization hierarchy is implicit for the
OCL notation.

7. Filters: Most common filter is ‘select’ operation.

Ex: aStatement. Transaction->select(amount>$100).

Examples of OCL expressions

Dept. of CSE. Page 31



Object Oriented Modeling and Design 15CS55

— A )

psa— e n_‘

— !_‘.r.r:riilC;xrr.:r-cceum‘l : " __.nsf:tullo ‘
L coourtNamber oo T

naztnumoired: ‘ s —

address
pheasMNimber

t0a anck

| T

gtatymaniDaie ! —_— —
— —
.l
- u-'i-'-"l-‘l".l"Ed::l [_ ‘-m*l-‘r'\:ﬂ_ l [—Transad:on
f L Smtement | o s gl AR
_(ﬂsio_ricr ! rerloL At ransactien vt ol - '.rafr“at;l.f;rvk.-.ika- .
R fi C 1= axplanatiorn
Bt k el i amount |
4 ; — ——
e
NG G P e e S ) i)
h AT = N ey -_—«« ary = diustment
CashAdvance interest | Purchasc Fae ‘ Adjust

: ' o [SERES b=

Write an OCL expression for—

1. What transactions occurred for a credit card account within a time
interval?

Soln: aCreditCardAccount.Statement. Transaction -
> select(aStartDate<=TransactionDate and

TransactionDate<=anEndDate)

2. What volumes of transactions were handled by an institution in the last
year?

Soln: anlnstitution.CreditCardAccount.Statement. Transaction ->

select(aStartDate<=TransactionDate and TransactionDate<=anEndDate).amount-

>sum( )

3. What customers patronized a merchant in the last year by any kind of
credit card?

Soln: aMerchant.Purchase -> select(aStartDate<=TransactionDate
andtransactionDate<=anEndDate).Statement.CreditCardAccount.MailingAddress.Cu
stomer ->asset( )

4. How many credit card accounts does a customer currently have?

Soln: aCustomer.MailingAddress.CreditCardAccount -> size( )

5. What is the total maximum credit for a customer for all accounts? Soln:

acustomer.MailingAddress.CreditCardAccount.Maximumcredit -> sum( )

Dept. of CSE. Page 32



VYV VvV

Object Oriented Modeling and Design 15CS55

Unit 2: Advanced Class Modeling 6 Hours

Toipics :
» Advanced object and class concepts
» Asoociation ends
* N-ary association
« Aggregation
» Abstract classes
» Multiple inheritance
* Metadata
+ Reification
+ Constraints
» Derived data
» Packages
2.1 Advanced object and class concepts

2.1.1 Enumerations

A data type is a description of values, includes numbers, strings,
enumerations Enumerations: A Data type that has a finite set of values.

When constructing a model, we should carefully note enumerations, because they
often occur and are important to users.

Enumerations are also significant for an implantation; we may display the possible
values with a pick list and you must restrict data to the legitimate values.

Do not use a generalization to capture the values of an Enumerated attribute.
An Enumeration is merely a list of values; generalization is a means for structuring
the description of objects.

Introduce generalization only when at least one subclass has significant attributes,
operations, or associations that do not apply to the superclass.

In the UML an enumeration is a data type.
We can declare an enumeration by listing the keyword enumeration in guillemets (<<
>>) above the enumeration name in the top section of a box. The second section lists
the enumeration values.

Eg: Boolean type= { TRUE, FALSE}

Eg: figure.pentype - -

Two diml.filltype

Dept. of CSE. Page 33



Object Oriented Modeling and Design 15CS55

Wrong ) )%&
| A >~ |

Spades/ Clubs Hearts \Diamonds

Card - -
<<enumeration>> <<enumeration>>
rank: rank Suit Rank
Correct . i

suit: suit Clubs King
Hearts Queen
Diamonds
Spades | |77

Modeling enumerations. Do not use a generalization to capture the
values of an enumerated attribute

2.1.2 Multiplicity

Multiplicity is a collection on the cardinality of a set, also applied to attributes
(database application).

Multiplicity of an attribute specifies the number of possible values for each
instantiation of an attribute. i.e., whether an attribute is mandatory ( [1] ) or an optional
value ([0..1] or * i.e., null value for database attributes ) .

Multiplicity also indicates whether an attribute is single valued or can be a
collection.

Person

rase s =hing [1]
sdorevs . srnz [1.7]
FhonzNunber | string[*]

kirhDatc : zaxe[1]

2.1.3 Scope

Scope indicates if a feature applies to an object or a class.

An underline distinguishes feature with class scope (static) from those with object
scope.

Our convention is to list attributes and operations with class scope at the top of the
attribute and operation boxes, respectively.

Dept. of CSE. Page 34



Object Oriented Modeling and Design 15CS55

It is acceptable to use an attribute with class scope to hole the extent of a class (the set
of objects for a class) - this is common with OO databases. Otherwise, you should
avoid attributes with class scope because they can lead to an inferior model.

It is better to model groups explicitly and assigns attributes to them.

In contrast to attributes, it is acceptable to define operations of class scope. The most
common use of class-scoped operations is to create new instances of a class,
sometimes for summary data as well.

2.1.4 Visibility

Visibility refers to the ability of a method to reference a feature from another class
and has the possible values of public, protected, private, and package.

Any method can access public features.

Only methods of the containing class and its descendants via inheritance can access
protected features.

Only methods of the containing class can access private features.

Methods of classes defined in the same package as the target class can access
package features

The UML denotes visibility with a prefix. “+”-> public, “-”-> private,
“#”->protected, “~”-> package. Lack of a prefix reveals no information about
visibility.

» Several issues to consider when choosing visibility are

Comprehension: understand all public features to understand the capabilities of a
class. In contrast we can ignore private, protected, package features — they are
merely an implementation convince.

Extensibility: many classes can depend on public methods, so it can be highly
disruptive to change their signature. Since fewer classes depend on private, protected,
and package methods, there is more latitude to change them.

Context: private, protected, and package methods may rely on preconditions or state
information created by other methods in the class. Applied out of context, a private
method may calculate incorrect results or cause the object to fail.

2.2 Associations ends

Association End is an end of association.

A binary association has 2 ends; a ternary association has 3 ends.

2.3 N-ary Association

We may occasionally encounter n-ary associations (association among 3 or more
classes). But we should try to avoid n-ary associations- most of them can be
decomposed into binary associations, with possible qualifiers and attributes.

Dept. of CSE. Page 35



Object Oriented Modeling and Design

15CS55

Year

Team Player
goalkeeper
|
|
|
Record
godls lor
goals against
Wins
losses
ties
Person
1
* 1
Car . Bank
inventoryl D : bankID
Make ! bNam e
model .
Finance
loanAmoll nt
‘ Persan
o e M
pIld
piame
[

Car Person
inventoryTd s P |
ey o bankId
ma e i bName

ol

The UML symbol for n-ary associations is a diamond with lines connecting to related
classes. If the association has a name, it is written in italics next to the diamond.
The OCL does not define notation for traversing n-ary associations.

Dept. of CSE.

Page 36



Object Oriented Modeling and Design 15CS55

A typical programming language cannot express n-ary associations. So, promote n-
ary associations to classes. Be aware that you change the meaning of a model, when
you promote n-ary associations to classes.

An n-ary association enforces that there is at most one link for each combination.

Person
Eg: L:rogrammer
Project | - B i Languag

Class 2 g e
diagrarn

Instance see prescribed text book page no. 65 and fing no. 4.6
diagram
2.4 Aggregation

Aggregation is a strong form of association in which an aggregate object is made of
constituent parts.

Constituents are the parts of aggregate.

The aggregate is semantically an extended object that is treated as a unit in many
operations, although physically it is made of several lesser objects.

We define an aggregation as relating an assembly class to one constituent part class.

An assembly with many kinds of constituent parts corresponds to many
aggregations.

We define each individual pairing as an aggregation so that we can specify the
multiplicity of each constituent part within the assembly. This definition emphasizes
that aggregation is a special form of binary association.

The most significant property of aggregation is transitivity (if A is part of B and B is
part of C, then A is part of C) and antisymmetric (if A is part of B then B is not part
of A)

X Zix 15
| Car }:\;—‘ Door —(>| llouse |
/"1__

‘ Fart

2.4.1 Aggregation versus Association

Aggregation is a special form of association, not an independent concept.
Aggregation adds semantic connotations.

If two objects are tightly bound by a part-whole relationship, it is an aggregation. If
the two objects are usually considered as independent, even though they may often be
linked, it is an association.

Aggregation is drawn like association, except a small (hollow) diamond indicates the
assembly end.

Dept. of CSE. Page 37



>

>

>

>

Object Oriented Modeling and Design

15CS55

The decision to use aggregation is a matter of judgment and can be arbitrary.

2.4.2 Aggregation versus Composition

The UML has 2 forms of part-whole relationships: a general form called
Aggregation and a more restrictive form called composition.

Composition is a form of aggregation with two additional constraints.

A constitute part can belong to at most one assembly.

Once a constitute part has been assigned an assembly, it has a coincident lifetime
with the assembly. Thus composition implies ownership of the parts by the whole.
This can be convenient for programming: Deletion of an assembly object triggers
deletion of all constituent objects via composition.

Notation for composition is a small solid diamond next to the assembly class.

EQ: see text book examples also
Composition

gl

Hand @ Firger

composition \
g

feerd @ U Sare

CIOmauer |

comp)siien megns \
-3 part instarce (Square) can orly be parl of ong
composte (Boara) at a fine

~he compose hes sole responsibilty for management ol

ils parts, 23pecely creaton and deletn

PSR,
cpu

database
7 N
@ € 2
1.¥% —T T ) A
table query
Dept. of CSE. Page 38



\ 2%

Object Oriented Modeling and Design

15CS55

Aggregation

Composition

o o we s e ouwd

Ty ap Hug wing 1.

Sapwsimal 3
R oS
| Gruraeleannng ! | SatesCrder e
| i ;
1 1 1 1
1 1 1 1
_______________ ! | s ssirests
MRS BRI - D R : R R S SR S R
,.1
Person . | FacultyRole ‘
0.1
1 ¥
0.1
StudentRole

Cirrle |‘
Polyoan I’

¥

Feant
an |

2.4.3 Propagation of Operations

Crele

pin Tt

Propagation (triggering) is the automatic application of an operation to a network of

objects when the operation is applied to some starting object.

For example, moving an aggregate moves its parts; the move operation propagates to

the parts.

Provides concise and powerful way of specifying a continuum behavior.

Propagation is possible for other operations including save/restore, destroy, print,

lock, display.

Notation (not an UML notation): a small arrow indicating the direction and
operation name next to the affected association.

Eg: see page no: 68 fig: 4.11

2.5 Abstract Classes

Abstract class is a class that has no direct instances but whose descendant classes

have direct instances.

A concert class is a class that is insatiable; that is, it can have direct instances.
A concrete class may have abstract class.

Only concrete classes may be leaf classes in an inheritance
tree. Eg: see text book page no: 69, 70 fig: 4.12, 4.13,4.14

Dept. of CSE.

Page 39



Object Oriented Modeling and Design 15CS55

In UML notation an abstract class name is listed in an italic (or pl. the keyword
{abstract} below or after the name).

We can use abstract classes to define the methods that can be inherited by
subclasses.

Alternatively, an abstract class can define the signature for an operation with out
supplying a corresponding method. We call this an abstract operation.

Abstract operation defines the signature of an operation for which each concrete
subclass must provid4 its own implementation.

A concrete class may not contain abstract operations, because objects of the concrete
class would have undefined operations.

2.6 Multiple Inheritance

Multiple inheritance permits a class to have more than one superclass and to inherit
features from all parents.

We can mix information from 2 or more sources.

This is a more complicated from of generalization than single inheritance, which
restricts the class hierarchy to a tree.

The advantage of multiple inheritance is greater power in specifying classes and an
increased opportunity for reuse.

The disadvantage is a loss of conceptual and implementation simplicity.

The term multiple inheritance is used somewhat imprecisely to mean either the
conceptual relationship between classes or the language mechanism that implements
that relationship.

2.6.1 Kinds of Multiple Inheritance

The most common form of multiple inheritance is from sets of disjoint classes. Each
subclass inherits from one class in each set.

The appropriate combinations depend on the needs of an application.

Each generalization should cover a single aspect.

We should use multiple generalizations if a class can be refined on several distinct
and independent aspects.

A subclass inherits a feature from the same ancestor class found along more than one
path only once; it is the same feature.

Conflicts among parallel definitions create ambiguities that implementations must
resolve. In practice, avoid such conflicts in models or explicitly resolve them, even if
a particular language provides a priority rule for resolving conflicts.

The UML uses a constraint to indicate an overlapping generalization set; the

notation is a dotted line cutting across the affected generalization with keywords in
br.s. Eg: see text book page no: 71,72 fig: 4.15,4.16

2.6.2 Multiple Classification

An instance of a class is inherently an instance of all ancestors of the class.

For example, an instructor could be both faculty and student. But what about a Harvard
Professor taking classes at MIT? There is no class to describe the

Dept. of CSE. Page 40



Object Oriented Modeling and Design 15CS55

combination. This is an example of multiple classification, in which one instance
happens to participate in two overlapping classes. Eg: see text book page no: 73 fig:
4.17

2.6.3 Workarounds

Dealing with lack of multiple inheritance is really an implementation issue, but early
restructuring of a model is often the easiest way to work around its absence.

Here we list 2 approaches for restructuring techniques (it uses delegation)

Delegation is an implementation mechanism by which an object forwards an
operation to another object for execution.

Delegation using composition of parts: Here we can recast a superclass with multiple
independent generalization as a composition in which each constituent part repl.s a
generalization. This is similar to multiple classification. This approach repl.s a single
object having a unique 1D by a group of related objects that compose an extended
object. Inheritance of operations across the composition is not automatic. The
composite must catch operations and delegate them to the appropriate part.

In this approach, we need not create the various combinations as explicit
classes. All combinations of subclasses from the different generalization are possible.
Inherit the most important class and delegate the rest:

Fig 4.19 preserves identity and inheritance across the most important generalization.
We degrade the remaining generalization to composition and delegate their operations
as in previous alternative.

Nested generalization: this approach multiplies out all possible combinations. This
preserves inheritance but duplicates declarations and code and violets the spirit of OO
programming.

Superclasses of equal importance: if a subclass has several superclasses, all of equal
importance, it may be best to use delegation and preserve symmetry in the model.
Dominant superclass: if one superclass clearly dominates and the others are less
important, preserve inheritance through this path.

Few subclasses: if the number of combinations is small, consider nested
generalization. If the number of combinations is large, avoid it.

Sequencing generalization sets: if we use generalization, factor on the most
important criterion first, the next most important second, and so forth.

Large quantities of code: try to avoid nested generalization if we must duplicate
large quantities of code.

Identity: consider the importance of maintaining strict identity. Only nested
generalization preserves this.

Dept. of CSE. Page 41



Object Oriented Modeling and Design 15CS55

2.7 Metadata

Metadata is data that describes other data. For example, a class definition is a
metadata.

Models are inherently metadata, since they describe the things being modeled (rather
than being the things).

Many real-world applications have metadata, such as parts catalogs, blueprints, and
dictionaries. Computer-languages implementations also use metadata heavily.

We can also consider classes as objects, but classes are meta-objects and not real-
world objects. Class descriptor object have features, and they in turn have their own
classes, which are called metaclasses.

Eg: see text book page no: 75 fig: 4.21

2.8 Reification

Reification is the promotion of something that is not an object into an object.
Reification is a helpful technique for Meta applications because it lets you shift the
level of abstraction.

On occasion it is useful to promote attributes, methods, constraints, and control
information into objects so you can describe and manipulate them as data.

As an example of reification, consider a database manager. A developer could write
code for each application so that it can read and write from files. Instead, for many
applications, it is better idea to reify the notion of data services and use a database
manager. A database manager has abstract functionality that provides a general-
purpose solution to accessing data reliably and quickly for multiple users.

Eg: see text book page no: 75 fig: 4.22

2.9 Constraints

Constraint is a condition involving model elements, such as objects, classes,
attributes, links, associations, and generalization sets.

A Constraint restricts the values that elements can assume by using OCL.
2.9.1 Constraints on objects

Eg: see text book page no: 77 fig: 4.23
2.9.2 Constraints on generalization sets

Class models capture many Constraints through their very structure. For example,
the semantics of generalization imply certain structural constraints.
With single inheritance the subclasses are mutually exclusive. Furthermore, each
instance of an abstract superclass corresponds to exactly one subclass instance. Each
instance of a concrete superclass corresponds to at most one subclass instance.
The UML defines the following keyword s for generalization.

Disjoint: The subclasses are mutually exclusive. Each object belongs
to exactly one of the subclasses.

Overlapping: The subclasses can share some objects. An object may
belong to more than one subclass.

Dept. of CSE. Page 42



Object Oriented Modeling and Design 15CS55

Complete: The generalization lists all the possible subclasses.
Incomplete: The generalization may be missing some subclasses.
2.9.3 Constraints on Links

Multiplicity is a constraint on the cardinality of a set. Multiplicity for an association
restricts the number of objects related to a given object.

Multiplicity for an attribute specifies the number of values that are possible for each
instantiation of an attribute.

Qualification also constraints an association. A qualifier attribute does not merely
describe the links of an association but is also significant in resolving the “many”
objects at an association end.

An association class implies a constraint. An association class is a class in every right;
for example, it can have attribute and operations, participate in associations, and
participate in generalization. But an association class has a constraint that an ordinary
class does not; it derives identity from instances of the related classes.

An ordinary association presumes no particular order on the object of a “many” end.
The constraint {ordered} indicates that the elements of a “many” association end have
an explicit order that must be preserved.

Eg: see text book page no: 78 fig: 4.24

2.9.4 Use of constraints

It is good to express constraints in a declarative manner. Declaration lets you express
a constraint’s intent, without supposing an implementation.

Typically, we need to convert constraints to procedural form before we can implement
them in a programming language, but this conversion is usually straightforward.

A “good” class model captures many constraints through its structure. It often requires
several iterations to get the structure of a model right from the prospective of
constraints. Enforce only the important constraints.

The UML has two alternative notations for constraints; either delimit a constraint with
br.s or pl. it in a “dog-earned” comment box. We can use dashed lines to connect
constrained elements. A dashed arrow can connect a constrained element to the
element on which it depends.

2.10. Derived Data

A derived element is a function of one or more elements, which in turn may be derived.
A derived element is redundant, because the other elements completely determine it.
Ultimately, the derivation tree terminates with base elements. Classes, associations,
and attributes may be derived. The notation for a derived element is a slash in front of
the element name along with constraint that determines the derivation.

Date of binh/ age

Dept. of CSE. Page 43



Object Oriented Modeling and Design 15CS55

A class model should generally distinguish independent base attributes from
dependent derived attributes.

Eg: see text book page no: 79 fig: 4.25

2.11 Packages

A package is a group of elements (classes, association, generalization, and lesser
packages) with a common theme.

A package partitions a model, making it easier to understand and manage.

A package partitions a model making it easier to understand and manage. Large
applications my require several tiers of packages.

Packages form a tree with increasing abstraction toward the root, which is the
application, the top-level package.

Notation for pakage is a box with a tab.

PackageName

Tips for devising packages
Carefully delineate each packages’s scope
Define each class in a single package
Make packages cohesive.
State Modeling

State model describes the sequences of operations that occur in response to external
stimuli.
The state model consists of multiple state diagrams, one for each class with temporal
behavior that is important to an application.
The state diagram is a standard computer science concept that relates events and
states.
Events represent external stimuli and states represent values objects.
Events
An event is an occurrence at a point in time, such as user depresses left button or Air
Deccan flight departs from Bombay.
An event happens instantaneously with regard to time scale of an application.
One event may logically precede or follow another, or the two events may be
unrelated (concurrent; they have no effect on each other).
Events include error conditions as well as normal conditions.
Three types of events:

e signal event,

e change event,

Dept. of CSE. Page 44



Object Oriented Modeling and Design 15CS55

e time event.

Signal Event

. A signal is an explicit one-way transmission of information from one object
to another.

= It is different form a subroutine call that returns a value.

= An object sending a signal to another object may expect a reply, but the reply
is a separate signal under the control of the second object, which may or may not
choose to send it.

= Asignal event is the event of sending or receiving a signal (concern about
receipt of a signal).

- Eg:
<<signal>> <<signal>> <<signal>>
StringEntered DigitDialed MouseButton Pushed
text digit button
location

The difference between signal and signal event
a signal is a message between objects a signal
event is an occurrence in time.
Change Event
= A change event is an event that is caused by the satisfaction of a Boolean
expression.
= UML notation for a change event is keyword when followed by a
parenthesized Boolean expression.
Eg:

®\when (room temperature < heating set point )
® when (room temperature > cooling set point )
® when (battery power < lower limit )

® when (tire pressure < minimum pressure )

Time Event

= Time event is an event caused by the occurrence of an absolute time or the
elapse of a time interval.

= UML notation for an absolute time is the keyword when followed by a
parenthesized expression involving time.

» The notation for a time interval is the keyword after followed by a
parenthesized expression that evaluates to a time duration.
Eg:

® when (date = jan 1, 2000 )
® after (10 seconds)

Dept.Of €SE: Page 45



Object Oriented Modeling and Design 15CS55

States
= A state is an abstraction of the values and links of an object.

= Sets of values and links are grouped together into a state according to the
gross behavior of objects

= UML notation for state- a rounded box Containing an optional state name, list
the state name in boldf., center the name near the top of the box, capitalize the fist
letter.

= Ignore attributes that do not affect the behavior of the object.

* The objects in a class have a finite number of possible states.

= Each object can be in one state at a time.

= A state specifies the response of an object to input events.

= All events are ignored in a state, except those for which behavior is explicitly
prescribed.
Event vs. States

» Event represents points in

time. > State represents intervals

of time.
Eg: power turned on power turned off  power turned on

N A )
Time Y Y

Powered Not powered

A state corresponds to the interval between two events received by an object.

The state of an object depends on past events.
Both events and states depend on the level of abstraction.

Dept. of CSE. Page 46



Object Oriented Modeling and Design 15CS55

State Alarm ringing on a watch

o State : Alarm Ringing
e Description : alarm onwatch is ringing to indicate target time
» Event sequence that produces the state
setAlarm {targetTime)
any sequence not including cfeardlarm
when (currentTime = targetTime)
» Condition that characterrizes the state:

alarm = on, alarm set to targetTime,
targetTime<= currentTime <=targetTime+20 sec , and no button has
been pushed since targetTime

» Events accepted in the state:

event response next state
when (currentTime =targetTime+20 ) resetdlarm normal
buttonPushea(any button) resetAlarm normal

Fig: various characterizations of a state. A state specifies the response of an
object to input events

Transitions & Conditions

e Atransition is an instantaneous change from one state to another.

e The transition is said to fire upon the change from the source state to target
state.

e The origin and target of a transition usually are different states, but
sometimes may be the same.

e Atransition fires when its events (multiple objects) occurs.

e A guard condition is a Boolean expression that must be true in order for a
transition to occur.

e A guard condition is checked only once, at the time the event occurs, and the
transition fires if the condition is true.
Guard condition Vs. change event

Guard condition change event

a guard condition is checked only once a change event is checked continuously
UML notation for a transition is a line may include event label in italics
followed by guard condition in square from the origin state to the target state
brackets an arrowhead points to the target state.

Dept. of CSE. Page 47




Object Oriented Modeling and Design 15CS55

— — timeout [cars in N/S left lanes] -~ N
/North/south Y — North/south
| iaht !~ . may turn left /
"..J_nay go stralgt?f,,. timeout lno cars Y <

o T g o T~ In N/S left lanes]

e timeout
HMECUT[NO Cars ~~_ s 1
e N in EAW left langs]
! East/west ~ Eastiwest ‘
\ may turn left / \ may go strarghp

A=

—" " timeout|cars in E/W left lanes]

timeout

Figure 5.7 Guarded transitions. A transition is an instantancous change
from one state 1o another. A guard condition is a boolean ex
pression that must be true in order for a Lransilion to occur

State Diagram

e A state diagram is a graph whose nodes are states and whose directed arcs
are transitions between states.

e A state diagram specifies the state sequence caused by event sequences.

e State names must be unique within the scope of a state diagram.

e All objects in a class execute the state diagram for that class, which models
their common behavior.

e A state model consists of multiple state diagrams one state diagram for each
class with important temporal behavior.

e State diagrams interact by passing events and through the side effects of
guard conditions.

e UML notation for a state diagram is a rectangle with its name in small
pentagonal tag in the upper left corner.

e The constituent states and transitions lie within the rectangle.

e States do not totally define all values of an object.

e |f more than one transition leaves a state, then the first event to occur causes
the corresponding transition to fire.

e If an event occurs and no transition matches it, then the event is ignored.

¢ If more than one transition matches an event, only one transition will fire, but
the choice is nondeterministic.

Dept. of CSE. Page 48



Object Oriented Modeling and Design

15CS55

Eg: Sample state diagram

PhoneLine

h
on-hock a3 idle ™ on-heck

Fast trunk busy ]
busy tone routad
*— J&"E
called phona answers
r L“"""‘"’D
called phone hangs up

. S

JR—

R S
digirrn}‘jTlallng invalid number

N —

valid number
number busy
—\Connedlng )

Recorded
message

mygasce

One shot state diagrams

Figure 5.5 State diagram for phone line

e State diagrams can represent continuous loops or one-shot life cycles
Diagram for the [hone line is a continuous loop

One — shot state diagrams represent objects with finite lives and have initial and

final states.
o Tine initial state is entered on creation of an object
o Entry of the final state implies destruction of the object.
Dept. of CSE. Page 49




Object Oriented Modeling and Design 15CS55

Chess )

0————5( Whlte s turn\F\

black white stafemate o =
moves moves sralemd!p et gt

checkmate

Btack’s turn l.r/ mockmate

|

L

Figure 5.9 State diagram for chess game. One-shot diagrams represent
objects with finite lives.

Chess l
— checkmate !
={3{) Black wins

2,( White’s turn ;

% " black whife stalemare :
Start (7 movosL moves& stalemafe ey Do

: |
( Black s turn turn checkma_a're jZ) White wins

Figure 5.10 State diagram for chess game. You can also show one-shot
diagrams by using entry and cxil points.

5.4.3 Summary of Basic State Diagram Notation

Figure 5.11 summarizes the basic UML syntax for statc diagrams.

State diagram name J

7~ statel >\ event (attribs) [condition] / effect j/ State2 ‘\\
= |

\ do / activity
9 \ezent! effect 7 \ Y

™

Figure 5.11 Summary of basic notation for state diagrams.

2l wnnna A enarial natation i ava

Dept. of CSE. Page 50



Object Oriented Modeling and Design 15CS55

State diagram Behaviour
Activity effects
=>» An effect is a reference to a behavior that is executed in response to an event.
=>» An activity is the actual behavior that can be invoked by any number of
effects.
=>» Eg: disconnectPhoneLine might be an activity that executed in response to an
onHook event for Figure5.8.

Dept. of CSE. Page 51



Object Oriented Modeling and Design 15CS55

Unit 3: Advanced State Diagrams

Syllabus-------- 7hr
. Nested state diagram
. Nested states
. Signal generalization
: Concurrency
. A sample state mode
. Relation of class and state models
. Relation of class and state models
. Use case models
. Sequence models
. Activity models

Problem with flat state diagrams
@  Flat unstructured state diagram are impractical for large problems, because —

representing an object with n independent Boolean attribute requires 2" states. By
partitioning the state into n independent sate diagram requires 2n states only.

%

3

Above figure requires n2 transition to connect every state to other state. This can be
reduced to as low as n by using sub diagrams structure.

%

Expanding states

e One way to organize a model is by having high level diagram with sub diagrams
expanding certain state. This is like a macro substitution in programming language

e A submachine is a state diagram that may be invoked as part of another state
diagram

Dept. of CSE. Page 52



Object Oriented Modeling and Design

15CS55

—
{\ Idie

|

VendingMachine |

- ©0ins infamount) / set balan

ST A ssANELLa,

— _::7

COIlectmg money
coms infamount) ! add to balance /

-

cancel f refund coins

litern empty|

select{item) —&hangew]

{ do /test item and compute chang(b l
— L

[change>0]

—— -

do /make change ) '

——

e o]

Figure 6,2 Yending machine state diagram. You can simplify state dia-
grams by using subdiagrums,

[Change =0]
,' Y

—'/dlspense Dlspenseftem ‘*&—f

— \_—_——

| Dispenseltem l

——

.90 /move arm to correct oolumn ) )

-—’<do /move

)__nn ready

—

arrn to correct row

—

B
—

pushed Va

=== ea
, \./'“"‘ —\ do/ 70/ push ifem off shelf }e=—— £ dy__l

—————

———
%-__%
e

“%__-_
—

Figure 6.3 Dispense item sy bmachine of vending machine.

' A lower-level
State diagram can elaborate a stage.

Page 53
Dept. of CSE.



Object Oriented Modeling and Design 15CS55
':"-62 Nested States
PhoneLine
el i o g3
. onHook ! disconnectLine }{\ ldle )
offHook
//’__ E B -.-.\\
/" Active - — P . i\
. DialTone > { , Timeout \I
( do /soundDialTone NG/ smmdLoudBee_P/

digh‘ﬂ) timeout },/'/- 2

Warning 3\
v do /play message

T fimeout ,f”\-—-’
digitn) l _¥

— Dial;ng.-‘-\ =i _ /" Recorded
N - invalidNumber Message
- =, : \ do /playMessage /
/ BusyTone y  numberBusy AN

validNurmber i 3%
\ do/slowBusyTone / ‘
- —_— 7 - ~
{  Connecting
‘\do /findConnection/
/—_ = -\\\ b . -
¢ Famiuey Took )«——‘—_T‘o:fe\d messageDone
\\aoxfastBusyTone ) trunkBusy N
e (’ Ringing
do rir'rgBeI!/‘

"
A
¥

| calledPhoneAnswers | conneciLine

( Connected 3

. /

calledPhoneHangsUp / disconnectLine

. ™,
( Disconnected =
b, b R A D SR
\\______7___ 33— - — -
Figure 6.4 Nested states Tor a phone line. A nested slale receives the
vulgoing transitions ol its enclosing stale.
Dept. of CSE. Page 54



Object Oriented Modeling and Design

15CS55

[ErTransmission )r1<:‘1 R
0—‘>&Neutral fz = Reverse )
" pushN ™~
push N '1' push F

/ Forward ' 8y
L stop stop __ ——, upshift  — » upshrf( —, ’ ‘
| @ =\ First IS Second |, ) { Third )
X " downshift dowrsnm S J

o

Figure 6.5 Nested states. You can nest states (o an arbitrary depth.

Signal generalization

You can organize signals into generalization hierarchy with inheritance of signal

attributes

agignale [
MouseButtonDown

u.’,"[gru'als:-
Userinput
davice .
|
P ]
asignal» wgignale
MouseButton KeyboardCharacter
location character
i’. ‘ £
| =y
agnals | | =signale | [«signals |
MauseButtonlp |Conlrul ‘ Graphic
_ ]
=5ignals agignale
Space B Jﬂllgtrrmnumerlr;.|

115

«gignals
Punciuation

Figure 6.6 Partial hierarchy for keyboard signals. You can organize
signals nsing generalization.,

e Ultimately, we can view every actual signal as a leaf on a generalization tree of

signals

Dept. of CSE.

Page 55



Object Oriented Modeling and Design 15CS55

In a state diagram, a received signal triggers transitions that are defined for
any ancestor signal type.

For eg: typing an ‘a’ would trigger a transition on a signal alphanumeric as
well as key board character.

Concurrency 1:

The state model implicitly supports concurrency among objects.

In general, objects are autonomous entities that can act and change state
independent of one another. However objects need not be completely independent
and may be subject to shared constraints that cause some correspondence among
their state changes.

1 Aggregation concurrency

Car

Y

{ -2} | ]
Ignition | | Transmission| | Brake | |Accelerator

Ignition turn key to start
[Transmisslon ——
ot }—in Neutral] /e ting LA @
turn key off :

Transmisslon sh A \
Neutral ch N |Reverse

push NT | pushF

downshift

T

Accelerator Brake
depress accelerator depress brake_
Off ). ( On) off ) ( On)
“release accelarator  release brake

2 concurrency within an object

Dept. of CSE. Page 56



Object Oriented Modeling and Design

15CS55

Bridge
| J#laylhg rubber |

/ N-S vulnerability ™

| /- N U ) X ¢ (s - S  N-$ gam e s 2

| ={ Not vulnerable } ’\Vulnerable -S wins rubber )

E-W vulnerability
N E-Wgame. s E-Wagame /-
| @——={ Not vulnerable ——= ' Vulnerable i———~ :»l E-W wins rubberl
\ B N Y, QUSSR i o
re - I

Figure 6,8 Bridge game with concurrent states. You can partition some ohjects into
subsets of attributes or links, each of which has its own subdiagram.

synchronization of concurrent activities

| CashDispenser ) Erﬁitting]
/’f/ ‘\
(,’5" do /dispense c(mh )_,.(\.,/, s =)
s e [—={_Ready to reset
/Settmg up } ——>K  SH ./
\\_—_ o \\(/

% do/eject card/t— — u
\__,—

B

Figure 6.9 Synchronization of control. Control can split into concurrent
activities that subsequently merge.

Dept. of CSE.

Page 57



Object Oriented Modeling and Design 15CS55

Interaction Models
@ The class model describes the objects in a system and their relationship.

@ The state model describes the life cycles of the objects.
@ The interaction model describes how the objects interact.

The interaction model starts with use cases that are then elaborated with sequence
and activity diagrams

e Use case: focuses on functionality of a system- i.e, what a system does for
users

e Sequence diagrams: shows the object that interact and the time sequence of
their interactions

e Activity diagrams: elaborates important processing steps
Use Case models
Actors

@ A direct external user of a system

@ Not part of the system

@ For example

[ | Traveler, agent, and airline for a travel agency system.

@ Can be a person, devices and other system

@ An actor has a single well-defined purpose

Use Cases

@ A use case is a coherent piece of functionality that a system can provide by
interacting with actors.

@ For example:

| A customer actor can buy a beverage from a vending machine.
| A repair technician can perform scheduled maintenance on a vending
machine.

@ Each use case involves one or more actors as well as the system itself.
A Vending Machine

Dept. of CSE. Page 58



Object Oriented Modeling and Design 15CS55

W Buy a beverage. The vending machine delivers a beverage after a customer se-
lects and pays for it

W Perform scheduled maintenance, A repair technician performs the periodic
service on the vending machine necessary to keep it in good working condition.

B Make repairs. A repair lechnician performs the unexpected service on the vend-
in2 machine nccessary to repair a problem in its operation.

B Load items. A stock clerk adds rems into the vending machine o replenish ity
stock of beverages.

Figure 7.1 Use case summaries for a veading machine. 4 1.ze caseis a cobermit piona of incior2lity that a syster can peavide by inlerz=ling
Wil anls

Clpoct Omiontoo Modetng and Degign win UYL Seeond ECition oy Michoaod 200
aNC JEres FLEnaun, ISEN G131 075800 4, 5 0 “corsan Beuccocn ine., Upgcr S23dc Fvas WL AL ngils rcsenrcd

@ A use case involves a sequence of messages among the system and its actors.

@ Error conditions are also part of a use case.

@ A use case brings together all of the behavior relevant to a slice of system
functionality.

Use Case Description (see text book fug 7.2)
Use Case Name

Summary

Actors

Preconditions

Description

Exception

Postcondition

000000

Actor

o

@ Use Case

A Vending Machine

Dept. of CSE. Page 59



Object Oriented Modeling and Design 15CS55

r Vending Machine
‘ ‘/ " buy \)A -
1 \_beverage / 3
e Customer
/" perform ™
( scheduled l O
\_malntenance /L o Lo
i P oy ]
s o AN
, 7" make “}-«f" Repair technician
'\ repairs / ‘
( load Itemst‘.»——.— ]
' _ ] | Stock clerk

Guidelines for Use Case

First determine the system boundary

Ensure that actors are focused

Each use case must provide value to uses
Relate use cases and actors

Remember that use cases are informal

Use cases can be structured

Use Case Relationships

@ Include Relationship

B Incorporate one use case within the behavior sequence of another use
case. @ Extend Relationship

B Add incremental behavior to a use case.

@ Generalization

B Show specific variations on a general use case.

0000 O

Use case Relationships

Include Relationship lude relationship generattzation

relationship

Examples:
<<include>> for common behavior

1)

Dept. of CSE. Page 60



Object Oriented Modeling and Design

15CS55

Yo v 8

N
| ! A Estexdlmen L
e T S e << cludess
....... \\. B e 2653 k Aiiuders
''''' Ty T T T T
; /\ < \ Chech Bor ve-crveation \
P '\\\ ’.-;";f e _,,.~-"/
BonkBorroveer \\ i = Sl '
. T .. : ’
S N
"N Bortew ¢apy T <<includ 2.
\\I.:ihl:\'\ll J..’/
(2)
secure session :
¢«
—
“——

validate password

> -

make trade - — «include»

Figure 8.1 Use case inclusion. The include relationship lets a base use case

incorporate behavior from another use case.

Object-Oriented Modeling and Design with UML, Second Edition by Michael
Blaha and James Rumbaugh. 1ISBN 0-13-1.015820-4. @ 2005 Pearson
Education, Inc., Upper Saddle River, NJ. All rights reserved.

(3)
A dnclude: \ mclude
Custome ' i
(4)
Dept. of CSE. Page 61



Object Oriented Modeling and Design 15CS55

(D

ldemdy Customer
A k%
<<include»> , * <<ndludess T <<include=>
77 ' -4
4 /-3'-’_‘-\\.
o R
Withdraw Cash Depesit Cash Trarsfer Funds

Extend Relationship examples:
<<extend>> for special cases:

1)
\l
(/"

BookBorrower
B 2 <<extend>> __ Refuse loan |

PP
| Borrow copy of book |*= S

2)
,/W

Extension points
oddif onel requess: After reservrg e

‘oo

¢ «extend»

|C|,|st0me | U Cusomer -eguests
| coffez machine

Raquest coffea
machihe

3)

Dept. of CSE. Page 62



Object Oriented Modeling and Design 15CS55

trade options

trade stocks
«-extend» «extendn

' «extend» | «extend»

margin tradlng limit order

Figure 8.2 Use case extension. The extend relationship is like an include relationship looked at
from the oppaosite direction, The extension adds itself to the base

Object-Oriented Modeling and Design with UML, Second Edition by Michael Blaha and James
Rumbaugh. ISBN 0-13-1-015920-4. @ 2005 Pearson Education, Inc., Upper Saddle River, NJ
All rights reserved.

Medical Clinic: «include» and «extend»

system name g
“Clinic

system boundary —»

Cancel Appointrrent

/ Make Appcintment Scheduler

e =<includes==
—

-—

Patient e . | include use case

\\ Check Patient Record %

<<include>>/|\

Daoctar

Request Medication
|~ extend use case

<=exend=> Defer Payment >~

Clerk

Pay Bill
Extension points
More Treatment

child use case
{

Bill Insurance

generalization

Dept. of CSE. Page 63



Object Oriented Modeling and Design 15CS55

Generalization

T ——
~ Somubapal >
/ N

v i\ N

trade bonds ﬁade stocks

Flgure 8.3 Use case generalization. A parent use case has common bahavior
and child use cases add vanations, analoQous 10 generglizalion amona classes

trade options

(2)eg:

L

Flace COdler

Phone Order Intemet Ord er

3 7

Customer Internet Customer

Dept. of CSE. Page 64



Object Oriented Modeling and Design

15CS55

Use Case Relationships

() 0
Securities
J\ Customer ). exchange
e \\ “/' \\
| /
'
Ir>4
Stock Brokerage System ,_,_l\ A }
\ '
( secure sessio I a
/’ . 4
. ’/
Ty X
«include» ., “ «ind JdC‘"l S «ingludes
y o
e /s v
7 Wy /
= Al '
o~ o %j/\\ P ol g *&' sincluden \"- e
( manage account ) (make trade ) — — — = valndale passwocd d)
’.«v / \ (Pe = 1
> 4 <
\ -
: A extonds ~ -~
Vo4 N Y liomis Avstar \
’/ \ \ TIARARL AR A ‘}
o \\\ S -
e < -~ R G S ~.
{ trade hands ! (trada stoeks ) (teada ontions )
N g '~ e .y " g o
\ 7 I\
) )
«gxtend» | «gxtend» , 7 , “axlend»
! - A
»// - ,\\/ '// B \\
(_ margin trading ) ( short sale )
S A e
1 dagpam meay combies sevaal biaes of ralasonships

Figure Ad lise case selationships, A sigio imse cas

Sequence Models

@ The sequence model elaborates the themes of use cases.
@ Tow kinds of sequences models

W Scenarios
B Sequence diagrams

Scenarios

@ A scenario is a sequence of events that occurs during one particular execution

of a system.
@ For example:

B John Doe logs in transmits a message from John Doe to the broker system.

Dept. of CSE.

Page 65



Object Oriented Modeling and Design 15CS55

Scenario for a stock broker

Jechn Dos logs in.

System establishes secure communications.

System displays portialio infermation.

John Dos enters a buy order for 100 shares of GE al the market price.
System verifies sufficient funds for purchase.

System displays confirmation screen with estimated cost.
John Doe confirms purchase.

System places order on securities exchange.

Svstem displays transaction tracking number.

John Doe logs out.

System establishes insecure communication.

System displays good-bye screen.

Securities exchange reports results of trade.

Figure 7.4 Scenario for a session with an onling stock broker, A soenano i a sequence of avets that ocours durng
206 LA CUIEr OxBCuhon O° 8 Bystam

Sequence Diagram

@ A sequence diagram shows the participants in an interaction and the sequence
of messages among them.

@ A sequence diagram shows the interaction of a system with its actors to
perform all or part of a use case.

@ Each use case requires one or more sequence diagrams to describe its
behavior.

Dept. of CSE. Page 66



Object Oriented Modeling and Design 15CS55

Sequence Diagram

—?'—F | =
create ’[ﬁew ()b‘lP('t
| e
message i I .:-.;-]fdo]t‘o.‘ltlﬂl'l
l - |
return |
<l )
defete |
e
X
1
Asynehronous Messaoe
new ) :
—p-| & 1ransaction
nev & Lransaction
/ — | Coordinator
|
! @ first
s ) new  Trunsachon
I L4 | Checker
| . |
I ~ | ;
| g
it
l I | 0"",0"' . ‘
| | HOCCSSING
| k. sugpiessed
| 2
\‘\ X
all ?
done? >< i
ok

/k-v/: \.k

| 2l = ’e(‘
heValid | l dane? slres

|
Self-Dajegation

Dept. of CSE. Page 67



Object Oriented Modeling and Design

15CS55

Concurrent Processes

» Activations - show when a method is active — either executing or waiting for

a subroutine to return

» Asynchronous Message — (half arrow) a message which does not block the
caller, allowing the caller to carry on with its own processing; asynchronous messages

can:
Create a new thread

Create a new object

Deletion — an object deletes itself

>

>

> Communicate with a thread that is already running
>

>

Synchronous Message — (full arrow) a message that blocks the caller

—_—

When a

Transactlou_’, a Transaction
is created..

b ereates a
Coordinator to ‘
manage the checking.

The Coordinator
creates a series
of Checkers, one

o
l
|

a Transaction | ’
Coourdinator

|

a first

&'ﬁ Transaction
Checker

for each kind of
check. These
Che kems do new —! 2 second
their checks as ' Tranm
sCparate processes. | L] = hCCker_l
| | e
| : fail
Il a givem check I =
fails, the Coordi ;
nator kills all ' kill
other Chockers | checkers i
that are sLll ,
running...
i xill
l beInva'Lid
...and tells the
Transacticn : deletig
that it is invalid. >< another !
ogject
Dept. of CSE. Page 68



Object Oriented Modeling and Design 15CS55

Sequence Diagram For a Session
m [:Guatamer] | ‘StockBrokarSystam ‘ | :SncurninaEmhmgeJ

log ini .

_secure communication | | [venfy cuslomer]

disalay partiale

enter purchase date
=

m _ request confirmation [verrify funds)
canfirm purchase t| m E‘
display order numbsar place oo

legout
insacure communication [execuie omder)

display good bye

__repon results of rade
messages Ll |

Flgurs 7.5 Sequencs 4 agram ior 3 epEeion with 5n online etook Brogar, A soquoros SEgiam
sheras Uea parliCiparis 0 @0 oleracBon and The sequencs ol Messeges among Tham

A stock purchase

:Customer :StockBrokerSystem :SecuritiesExchange

enter purchase data

-

~ request confirmation {verify funds}
confirm purchase
_ display order number place order

' report results of trade {execute order}

L L —

Figure 7.6 Sequence diagram for a stock purchase. Sequence diagrams can show large-scale
interactions as well as smaller, constituent tasks.

A stock quote

Dept. of CSE. Page 69



Object Oriented Modeling and Design

15CS55

:Customer

:StockBrokerSystem

:SecuritiesExchange

enter stock symbol

display quote

M

—J

A exception case

-

request stock data

report stock data

A

Figure 7.7 Sequence diagram for a stock quote.

:Customer

:StockBrokerSystem

:SecuritiesExchange

enter purchase data

.

reject purchase

cancel purchase

Guidelines

—

{verify funds:
insufficient)

Figure 7.8 Sequence diagram for a stock purchase that fails.

@ Prepare at least one scenario per use case

@ Abstract the scenarios into sequence diagrams
@ Divide complex interactions
@ Prepare a sequence diagram for each error condition

Procedural Sequence Models

@ Sequence Diagrams with Passive Objects

u A passive object is not activated until it has been called.

Dept. of CSE.

Page 70



Object Oriented Modeling and Design 15CS55

:Transaction :CustomerTable :RateTable

compute
commission ( )

I
I
> I
I

service level (customer)

Procedure call

commission
- — —— ! !

Figure 8.5 Sequence diagram with passive objects. Sequence diagrams can show the
implemeantation of operations.

Sequence Diagrams with Transient Objects

An active
object

objectA objectB

' I Passive
operationE (c, d) = object
createC@m) T onjeste Transient object

operationk (m, n)

resultT {execute order}

resultV

Figure 8.6 Sequenca diagram with a transient object. Many applications have a miv cf actve and
pzssive objects. Thay create and destroy cbjects,

Activity Models
@ An activity diagram shows the sequence of steps that make up a complex
process, such as an algorithm or workflow.

Dept. of CSE. Page 71



Object Oriented Modeling and Design 15CS55

@ Activity diagrams are most useful during the early stages of designing
algorithms and workflows.

@ Activity diagram is like a traditional flowchart in that it shows the flow of
control from step to step
Activity diagram Notation

@ Start at the top black circle

@ If condition 1 is TRUE, go right; if condition 2 is TRUE, go down

@ At first bar (a synchronization bar), break apart to follow 2 parallel paths

@ At second bar, come together to proceed only when both parallel activities are
done

@ Activity —an oval

@ Trigger — path exiting an activity

@ Guard — each trigger has a guard, a logical expression that evaluates to “true”
or “false”

@ Synchronization Bar — can break a trigger into multiple triggers operating in
parallel or can join multiple triggers into one when all are complete

@ Decision Diamond — used to describe nested decisions (the first decision is
indicated by an activity with multiple triggers coming out of it)

. Activity Diagram

Y

-

¢ . lcondition1] 7 b
Activity b —=>{ Activity —
- ./" \'\ v
[condition 2]
* [for all thingies] \
v
- -\\\ ’/’ N,
i\‘\cﬁ vify’) ‘\:.'\Cti v ity“)
b e o
W, \ 4
[synchronization
condition| \l/
,’, \\
[ Activity)
\' /

pe -

7N
@~

Eg:



Object Oriented Modeling and Design 15CS55

Person Grisgd Deciston i.mw’(y
'/‘.. Tind .\’\_‘ Ino cotiee) T, [na eola]
.——_4:—‘\ Beverage 7
\ @
Sunchronzaton Sar BT :
) ! [fownd colles| [found cola]

. | ' R '\’.' Y I.l X j.
- - - - -

i B \, Ve 2 o - ", G e
! Put Coffee % /7 Add Waler N [/ Get SN GetCan Yy
 mTiller o to Reservoir Y Cups B of Cola ]

Nz o VONSE o \-\,_ - 4 R /

N N

/" Put Filter
i, in Machine | Activify
RS 5

i |

T

el 2N
¢ MTurnOn O,
‘..\ Machine ’,)

e -._/
‘L * collewPol. TurnOn
7 Beew
(, Coffes !
\-._ .-f‘/
L i
light gons ot Js W "'w\
¢ Pour i ik N

g™,
| Coffee 0 Bevenuge "'\.)
/ p e %]

- — -

Eg: activity diagram for Use Case: Receiving an Order

Dept. of CSE. Page 73



Object Oriented Modeling and Design 15CS55

.- ..
' .

4 - N

-2 Receive \

. -, Order |,
b od

. et

1

TT- Acitipie Trigger
s

* |for each line

Al Wit on order]
e o 35 - gy
('l Cancel ",,,- "' Authuriz:'\ 7 L[l‘"}re'cek \
\ Order ; N % l"a}'meut ( |

" \ ]
SyL 7 [fﬂle‘d] \._\ ‘.,,f \\.‘ I_(-EE //,.

[succoeded) Lin stock]
) i4

f.-' B \\
{ Assign to
. Order )

!
!

Synchronization Conaiien

\ —
\
\
N\
\.‘ [need to] e
reordes] # Reprder
[stock azsigned ¢ |, e ( [tem |
Al Ime ieme 200 e —t— N -

payrment authorizerd)

(’ Dispatch Y
. Order ;
N s

-

Dept. of CSE. Page 74



Object Oriented Modeling and Design

15CS55

Activity diagram for Use Case: Receiving a Supply

€ /R

D

-~

\
ecewe k)
Supply 4

4

P

 Choose ™
( Quistanding '
Order ltem«/ !

-

# [for cach choscn
W order item]

7 Assm 1\
Coodsto |

Order /

~

[slock assigned 1o U
Al line (1EMS 4111 me——
pavment authorized]
A

-

' Dlspabch
t\ Order )

~ -~

-~.

s

-

[4[] vutstanclic L]\f
ordder thans filled]

v
/.' Add \\\
| Remainder ]

. to Stack 2

Dept. of CSE.

Page 75



Object Oriented Modeling and Design

15CS55

Activity diagram for Use Case: Receiving an Order and Receiving a Supply

-

7 N,
. ~  Receive \I
T Order )

S

- -

* [fir each Jing

W

' Rer.en'e )
., buppl)

T

g
v

W e item on audec] /7 Chonse \
-a = B i Qutstandin
";mtlumz} / Check ™, l‘ Onler Item§
T'a\‘menl | | Line )
|failed ], \ ltem
W = s = [{ur wach
A [in staclc chosen
% Caneel \' [suocesed) \i ! A, order ilom]
| Order " P OB v
o W 7 Assi * 7~ Asui rn\
\ Ag;‘ ﬂm | { Goods tu i
"\-T A e,/
.H‘ W
P ]
Ineed to .,
eorda] © Reorder |
e =3 ( em .-’ L_

[stock assigned
tnallline 1[.:-;"-_.,
and r\a v ‘llc‘.[lt
aulharized

'
D

[all "ubqlnnmnﬁ '=~

arder itemes fille

- ~ PO . N
f Di ; \ S Add N
' (;E.ilélc b | Remainder |
X 4 to Stowk  /
\ ‘\" 2 -./
Dept. of CSE. Page 76



Object Oriented Modeling and Design 15CS55

Activity diagram for stock trade processing

o A

® > verfyorder |
N —r’

F ™,

i exscute oder |
g . N 2 )
Refined
| next page

synchronization

[failure]

\

D
[sLeeess)
PR S—
,”f’ ! " .
# \f I N Sy == BRIk P =,
( send ) { debit ascount ) ( upceic onine') ( _sond ‘}
_confirmation R —— \ portfolio \fallure rotice )
\\ { e
\‘ /_—\ "4
. ., sattle rade ) F
\\ 4 “f
o N 7S
termination N
W S

A% o,
@ )< , close orde /)<

Figure 7.9 Activily diagram for slock rude processing. & aclivity dispae cshiows e sogueiu ol sags
1 MZEQ JP 3 COMP O DIOCOLE

A Finer Activity for execute order

[mark=t order] /I\ ' 3
i i [timeout
[selingl _A._[buying] firmit o] | [Orster sl mctiva) L
R B Sdo?
= ' P [prce not available]T
find buyer N 7 find seller N R
&t markat price ) \ at market price ) _ )
N 7 N s/ [price available]
[selling] A [buying]
( NS
v
(/f nd buyer at Ii'mt\) find soller at Iimit\I
price or better . price or befter
v
7N e
& ®)

Figure 7.10 Activity diagram for ococvto ordor. An acsvity may bo dacomgcesd ivlc finer aotitios,

Guidelines
@ Don’t misuse activity diagrams
B Do no be used as an excuse to develop software via flowcharts.

Dept. of CSE. Page 77



Object Oriented Modeling and Design

15CS55

@ Level diagrams

@ Be careful with branches and conditions
@ Be careful with concurrent activities

@ Consider executable activity diagrams
Special constructs for activity diagrams

e Sending and receiving signals

e Swim lanes

e Object flows

Sending and Receiving Signals

."—“—"'@KEC ute boot sequ BHCD

ll
{ accept user login

l

y
I .. W
requesl validation P = |
: I
v v
wait ‘or response ) network
O — 3 1
L |
ireceive confirmation €&~ — — — -
Y

W

" ready )

Figure 8.7 Activity diagram with signals. Acivity diagrams can show
Ting conlral v sending and receding evednts

Swimlanes

o To know which human organization is
responsible for an activity.

Flight attendant Ground crew Catering

-

- ¥ e T e
clean trash L | addfuel ) ——‘%

e . ol

Figure 8.8 Activity diagram with swimlanes. Swimlanes can show organizational responsibiling

foa Aclivities,

Swimlanes - Activity Diagrams that show activities by class

Dept. of CSE.

Page 78



Object Oriented

Modeling and Design

15CS55

>

particular department)

Arrange activity diagrams into vertical zones separated by lines
» Each zone represents the responsibilities of a particular class (in this example, a

) Oxder Stlock
Finanve Pracessing Manager
/'-' > ."\'
'-' Receive ) ’
. Order |
. Y, 5
- - -.I
/"/- —\‘-
W { léeceire )
. Supply |
| . o
# [for each line
item on nrder] \l',
| kY ',‘/-; .C'lum.:'ﬁ-.\.
- - y e >\ [ Qutstanding '
4 \uthuriz«t" ‘ [failed] By (i'}f&_‘k 3 \ Order Items
| Payment T \  Tem e =
% s N o A w[for cadh
o ¥l T lchmsn
/ o g
l-' Cancel "‘ Nk
\ rder | y! [im sknck] ,
\\.. ./‘ /_,_‘_.‘_" W
succoeded { Arsign to Z Assign ™
[ !  Order | | Goods to |
Ny ', Order
- —
[meed 0 - A
_reaeden] £ Reorder )
Il 5 3 Item /.'
[stack assipniad |
to all line ilehs |all vitstunding V¥
and paym arder items fillec]
authorized |
' AN 4
e, . A
Dispatch * (o Add N
| “Otier | { Remainder |
AN o Y toStock

p

Object Flows

@ Show both the control and the progression cf an
object from state to state as activities act on it.

Dept. of CSE.

Page 79



Object Oriented Modeling and Design 15CS55

:Airplane :Airplane :Airplane
[at gate) ‘ [taxiing] (in fiight]
|

Ohject with :@,i{gf{;? ‘ ﬁﬂ?\g]e ‘_@
state

Figure 8.9 Activity diagram with object flows. An activity diagram can show the cbjects that are inpuls o
oulputs of activites

Dept. of CSE. Page 80



Object Oriented Modeling and Design 15CS55

UNIT -4 7 Hours

PROCESS OVERVIEW, SYSTEM CONCEPTION, DOMAIN
ANALYSIS

Syllabus :

> Process Overview: Development stages; Development life cycle. System
Conception:

> Devising a system concept; Elaborating a concept;

> Preparing a problem statement. Domain Analysis: Overview of analysis;
> Domain class model; Domain state model; Domain interaction model;

> Iterating the analysis.

Process overview
e A software development process provides a basis for the organized production of
software, using a collection of predefined techniques and notations.
Development Stages
e System Conception
e Conceive an application and formulate tentative requirements
e Analysis
e Deeply understand the requirements by constructing models
e System design
e Devise the architecture
e (Class design
e Determine the algorithms for realizing the operations
® Implementation
® Translate the design into programming code and database structures
e Testing
e Ensure that the application is suitable for actual use and actually satisfies
requirements
e Training
e Help users master the new application
e Deployment
e PI. the application in the field and gr.fully cut over from legacy application
e Maintenance
Preserve the long term viability of the application
Analysis
To specify what must be done.
e Domain analysis focuses on real-world things whose semantics the
application captures.
Application analysis addresses the computer aspects of the application that are
visible to users
System Design

Dept. of CSE. Page 81



Object Oriented Modeling and Design 15CS55

e Devise a high-level strategy — the architecture — for solving the application

problem.
e The choice of architecture is based on the requirements as well as past experience.
Class Design

e To emphasis from application concepts toward computer concepts.
® To choose algorithms to implement major system functions.

Development Life Cycle

e Waterfall Development

e |terative Development

Waterfall Development

e The stages in a rigid linear sequence with no backtracking.

e Suitable for well-understood applications with predictable outputs from analysis and
design.

=

Fagquiramant=a

smzcificotd oo |
LAmiwr, 1

leaplera zetation

Iterative Development
e  First develop the nucleus of a system, then grow the scope of the system...
e There are multiple iterations as the system evolves to the final deliverable.
e Each iteration includes a full complement of stages:

e analysis, design, implementation, and testing

Dept. of CSE. Page 82



Object Oriented Modeling and Design

15CS55

Requirements Analysis & Design
Implementation
Planning

Deployment

Initial :
2lanning |
Evaluation Tosti
esting

Summary of development process for the organized production of software

*Ryets

System

«pevelopers
conceplicn

sMapagers - -~

sBuxlness
exXpuily

Analysis:

Domall  Lycay
agitalysis  larviaws

e Y
on sysreins

mralysis

Design:  -Arckltectne

oSystppn  TUSECASES

dasion *Alyorithas
sOptIM¥zarinK

e{lass

design

System Conception
e  System conception deals with the genesis of an application

Devising a System Concept
e New functionality
Streamlining
Simplification automate manual process
Integration
Analogies
Globalization
Elaborating a Concept

Dept. of CSE.

Page 83



Object Oriented Modeling and Design 15CS55

Good system concept must answer the following questions
e Who is the application for?
e Stakeholders of the system
e What problems will it solve?
e Features
e Where will it be used?
e Compliment the existing base, locally, distributed, customer base
e When is it needed?
e Feasible time, required time
e Why is it needed?
e Business case
e How will it work?
e Brainstorm the feasibility of the problem
The ATM Case Study
Develop software so that customers can access a bank’s computers and carry out their own
financial transactions without the mediation of a bank employee.

The ATM Case Study
e Who is the application for?
e We are vendor building the software
e \What problems will it solve?
e  Serve both bank and user
*  Where will it be used?
e Locations throughout the world
e When is it needed?
® Revenue, investment
e Why is it needed?
e Economic incentive. We have to demonstrate the techniques in the book
e How will it work
e N-tier architecture, 3-tier architecture

[ [

Preparing a problem statement
Design the software to support a computerized banking network including both human
cashiers and automatic teller machines (ATMs)to be shared by a consortium of banks. Each bank

Dept. of CSE. Page 84



Object Oriented Modeling and Design 15CS55

provides its own computer to maintain own accounts and process transactions against them. Cashier
stations are owned by individual banks and communicate directly with their own bank’s computers.
Human cashiers enter account and transaction data ...... The ATM Case Study

()

» a )
= | Cashier
Station
(')F VAN X 7N\

\
- N\
r AT N —_— = Account
/n \, ., o

N\ I~ Bank
\_J ‘\\ _- Computer|
“-\ A7 T T Account
|
l ATM F— _~ ] Centml [
(s — w-n -
- s NSy [ _— Account
ST, ~J Bank I
et %% Compuier|

AT | N Account

Figure 11.3 ATM network. The ATM caze study threads thrcugnout the remainder of this boclk

Dept. of CSE. Page 85



Object Oriented Modeling and Design 15CS55

PART B
Unit: 5 APPLICATION ANALYSIS, SYSTEM DESIGN
7 Hours
Syllabus:
> Application Analysis: Application interaction model; Application class model;

Application state model;

YVVVVVY

Adding operations. Overview of system design; Estimating performance;
Making a reuse plan; Breaking a system in to sub-systems;

Identifying concurrency; Allocation of sub-systems; Management of data
storage; Handling global resources; Choosing a software control strategy;
Handling boundary conditions; Setting the trade-off priorities; Common
Architectural styles; Architecture of the ATM system as the example.

Application Analysis
Application Interaction Model - steps to construct model

Determine the system boundary

Find actors

Find use cases

Find initial and final events

Prepare normal scenarios

Add variation and exception scenarios

Find external events

Prepare activity diagrams for complex use cases.
Organize actors and use cases

Check against the domain class model

Determine the system boundary .

Determine what the system includes.
What should be omitted?
Treat the system as a black box.
ATM example:
— For this chapter,
» Focus on ATM behavior and ignore cashier details.

Find actors

4

7N

Dept. of CSE. Page 86



Object Oriented Modeling and Design 15CS55

» The external objects that interact directly with the system.
» They are not under control of the application.
» Not individuals but archetypical behavior.
« ATM Example:
— Customer, Bank, Consortium

3. Find use cases

» For each actor, list the different ways in which the actor uses the system.
» Tryto keep all of the uses cases at a similar level of detail.

— apply for loan

— withdraw the cash from savings account

— make withdrawal

Use Case for the ATM

ATM
itiat )
oy
A
L ™ ’
ﬁg < | _{_ account 4

o il W L

i \ / -\;?‘— T
SRSy
Ao trarrlgggtslin /rL _ f"consq:{i“m
R
. SRS
Fiourm 131 lisa rasa diaoram ‘or fhe ATM. | l2F racses nartition the

* Initial session
= Fhe ATRA coeabbzohos bR Tfent By of thie der 205d mickzy
avallzgke 2 beraf goeaunue sl ecthom.
® Buery ACLOgT
- Fha n,n,-:m providos concra! Aate tor a0 acsaani tuck £
he cnrranl BrlenGs, Sl of st transastion, and Sharo af
qoeteg oo lgwr viatenasent.

Dept. of CSE. Page 87



Object Oriented Modeling and Design 15CS55

* Process ttansaction
- The AT yatoin perfarnis an Jotwa thzar affasr, an
AT Bal®Ne e, AUCh B4 dfr st WEIMR e, O TR
Fhe ATM Prsuees that A nocapiotad Iransaeriaonsg o
wHimalely WwWeitien & the Dok s datahaase.
= Trarnsrrny dara

- The ATat orer the consoth i’y factifitder 20 cornimiuirinabe
ot rhe gaoonronepis: bapk comnurer,

4. Find initial and final events

Finding the initial and final events for each use case
To understand the behavior clearly of system
Execution sequences that cover each use case
Initial events may be
a. A request for the service that the use case provides
b. An occurrence that triggers a chain of activity
ATM example
* Initial session
— Initial event
»  The customer’s insertion of a cash card.
— final event
»  The system keeps the cash card, or
» The system returns the cash card.
ATM example
*  Query account
— Initial event
* A customer’s request for account data.
— final event
* The system’s delivery of account data to the customer.
ATM example
» Process transaction
— Initial event
*  The customer’s initiation of a transaction.
— final event
«  Committing or
» Aborting the transaction
ATM example
*  Transmit data
— Initial event
» Triggered by a customer’s request for account data, or
* Recovery from a network, power, or another kind of failure.
— final event
»  Successful transmission of data.
5. Prepare normal scenarios
For each use case, prepare one or more typical dialogs.

EReamamessss———..



Object Oriented Modeling and Design 15CS55

A scenario is a sequence of events among a set of interacting objects.
Sometimes the problem statement describes the full interaction sequence

6. Normal ATM scenarios
Initiate session
The ATM asks lhe user lo inserl a card.
I he ussrinserts a ¢ash card,
The ATIM accerts the card and reads its seria' number
The ATM requests tre pessword.
The user enlers “1234.7
Ihe Al venlies the cassword by corfacting the conscrtium and bank.
The ATM displays a menu of accounts and commards.

The ussr chooses the command Lo leaminale ths session.

Ihe AW pints a "ece pt, ejects tha card, ard asks the user to take tham.
The user takes the receipt enc the card.

Thc ATM asks the user o inscrt a card

*  Query account

The ATM displays a menu of accounts and commards.

The uscr chooses to query an account.

The AT contacts the ccnsorlium ard bank which return the data.
The AT displays acccunt data for the user,

Ihe ATM displays a menu of accounts and commards.

» Process transaction

The AT displays a menu of aczounts and commands

The user selacts ar account withdrawal

The AT &sks for the amount of casn.

The user arters $100.

The ATM verifies that the withcrawel satisfies its policy limits,

The ATM contacts the corsorlium ard bank and verifies that the account
has suffcient funds,

The ATM dispenses the cash and asks the user tc take it.

The user iakes the cesh.

The ATM displays a menu of accounts and commands.

* Transmit data
The ATM requests account data from the consorticm.
The consortium acceots the request and forwards it to the cppropriate bank.
The bank receives the reguest and retricves the desired data.

The bhank sends the data to tha consortium
The consorium roules the data to the ATM

7. Add variation and exception scenarios
Special cases
Omitted input E.g., maximum values, minimum value
Error cases
E.g. Invalid values, failures to respond
Other cases
E.g. Help requests, status queries

ATM example
+ Variations and exceptions:
— The ATM can’t read the card.
— The card has expired.
— The ATM times out waiting for a response.

Dept. of CSE. Page 89



Object Oriented Modeling and Design 15CS55

— The amount is invalid.

— The machine is out of cash or paper.

— The communication lines are down

— The transaction is rejected because of suspicious pattern of card usage.
Find external events
The external events include

— All inputs,

— decisions,

— interrupts, and

— Interactions to or from users or external devices.
An event can trigger effects for a target object.
Use scenarios for normal
events Sequence diagram
Prepare a sequence diagram for each scenario.
The sequence diagram captures the dialog and interplay between actors.
The sequence diagram clearly shows the sender and receiver of each event
ATM Example

Sequence diagram of the process transaction

‘User (ATM :Consortium ‘Bank

dispiay manu

szlect withdrawal
3

selsct account

recuest armount

enter amount

veri'y funds

verity funds

confirm funds

confirm funcls

disvense cash

take cash

Figure 13.3 Sequerce diagrem for the process transaction acenaric. A caquance ciaam cloarky 3hows the
sardar ard rsoeive” of @ach evan:

Events for the ATM case study

Dept. of CSE. Page 90



Object Oriented Modeling and Design 15CS55

szt card, enter password, select accuunt, select deposit
select witldrawal, trans e funds, vuery aceount
enter amount, Gike cash, take card
cancel, ternate, conlinug

>
User ; ; w ATM
display main screen
unreadable card message, canceled message
request passwonl, request amount
eject card. fuilure message
dispense cash, request take eash
request continuation

transaction succeeded
transaction failed

. e {Zhptvvo s process transaction account OK
print receipl. request ake cand verify zccount L T had acconnt
bad account message verify funds had password
had bank code messnge had hank enide
display rransaction menu confirm funds

verify card with bank, verify funds
process bank ransaction

-

-<—

Bank % Consortium
bank transaction succeeded, confirm funds
bank transaction failed, bank account OK
had hank zecount, had hank password

Figure 13.4 Events for the ATM case study. Tally 1"¢ guems n°hs scanaios nd nete e ciasses thEt send and receie gae™ mvanl.

9. Activity Diagram

» Activity diagram shows behaviors like alternatives and decisions.
»  Prepare activity diagrams for complex use cases.

» Appropriate to document business logic during analysis

» Do not use activity diagram as an excuse to begin implementation.

ATM Example

Activity diagram for card verification

Dept. of CSE. Page 91



Object Oriented Modeling and Design

15CS55
(o) PL
Ia N ) /A\
raturn card | insert card }—=<
\ T / ( / N~ ‘unraadabdle|
lreadable]
.communications down] -~ [cad bank code or bad acccunt]
Lcard OK]
[communications cowr] AT [account fraud alert]
N
l [good account}
[cemmunications down] %
i request nessword
\ /
[communications down] /I\ |multiple password failures)
N
[correct paaaword]l i YNy .
N N
(2/ keeo card |

Figure 13.5 Activity diagram for card verification You can usz activity dagrams 1o documert busress logic
butce not usa tham as an a2 156 1o 339N prematuia implaman aticn,

10. Organize actors and use cases
» Organize use cases with relationships
— Include, extend, and generalization

+ Organize actors with generalization.

ATM Example

DeBt. of CSE. Page 92



Object Oriented Modeling and Design 15CS55

£) Q) Q
L Consortium L Customer Bank
s \\ .‘_." \\\ .:"’ \\\
~ S | L —
ATM s -
{ Initlate sesslon |
e _—
\.
«Includex T ncludes !
" £ ! "‘
i \
i — —— — Lot
-~ ~. - 2 -~ w110 Y
{_query account ©  ( process transaction ) v
- —— I —— - - —— . i -
. ’
winiglades ! g
s ¢ 7
‘i«, s . < (/&’
[ lransmit data |
ot —— — i “/

Fagure 13 6 Drganoing use cases [ ocs the basic ias cases ars identhed, p0 can oicanse
D 11 10 rch i o s

11. Checking Against the Domain Class Model

»  The application and domain models should be mostly consistent.

» The actors, use cases, and scenarios are all based on classes and concepts from the
domain model.

» Examine the scenarios and make sure that the domain model has all the necessary data.
» Make sure that the domain model covers all event parameters.

- 1
EntryStation Transaction ‘—l *
y | EnteredOn . | |
1 kind o
dateTime update
amount amount
_k_‘ AN [
! kind
ATM Cashier | 0..1 *
station —
cashOnHand Cashier Remote
0.1 . transaction Transaction
. Communicates C ] —
Communicates
With With * *
E”ti edBy AuthgrizedBy
Employs Cashier i
0..1] name1 Card
ISSU€s Authorizatio
[ . }
——+—passwor
| d
CashCard 1 limit
1 passWord *
station 1
station 1 Code _{emplyoee Customer
[— Code Bank  Code - Account *__ name
Consortium Bank 0..1 — — address T
Code namei.1  card balance 4
account s 1 0.1 creditLimit
Code —T —— type 1

Application Class Model

Dept. of CSE. Page 93



Object Oriented Modeling and Design 15CS55

Application classes define the application itself, rather than the real-world objects that the
application acts on

Most application classes are computer-oriented and define the way that users perceive the
applications

Application Class Model — steps

1.

-

Specify user interf.s
Define boundary classes
Determine controllers
Check against the interaction model
Specify user interf.s
User interf.
a. Isan object or group of objects
b. Provide user a way to access system’s
i. domain objects,
ii. commands, and
iii.  Application options.
Try to determine the commands that the user can perform.
A command is a large-scale request for a service,
c. Eg
i. Make a flight reservation
ii. Find matches for a phrase in a database
Decoupling application logic from the user interf.. ATM
example - The details are not important at this point.
» The important thing is the information exchanged.

Messuges o user
1 2 3 CIL.EAR
B S (€] CANCEL
T 8 9 FENTER
(8]
f ] ] ]
recccipts cash slot

Flgure 13.7 Format of ATM Interface. Somatimas a sampla
iNntertace can halp you visualize the oparation ot an appiic aton

Dept. of CSE. Page 94



Object Oriented Modeling and Design

15CS55

Dept. of CSE.

Userinterface | Consortiumintertace |
CashCardBoundary s % Account8oundary
bankCcde benkCode
cardCcde accountCode ProblemType
saria/Numer helance
password crecitlimit TAMe
Tl AceanntType
bankName bankNzma
customarName *
customarAddress ContlrallerProblem
startCataTime
Remole | acine mnsaction TransactionController stopDatelime
Transaction |+ 1.1 -
stertDete Time .
AcliveCad
CashCard & 71 ATMsession SesslonController
Y *
il U stedDeteTme : status
Account |agiveAccount
Flgua 13.6 AN wp!lmwn cleaamcedel Anp conclasasa gmaatire Coran ciszces and At

TRy O daeakapmen,

Defining Boundary Classes

A boundary class

— Is an area for communications between a system and external source.
— Converts information for transmission to and from the internal system.
ATM example
» CashCardBoundary
» AccountBoundary
— Between the ATM and the consortium

ATM Example

Page 95



Object Oriented Modeling and Design

15CS55

Userinterface Consortiuminterface
CashCardBoundary *_ AccountBoundary
bankCaode bhankCode
vardCode accountCude ProblemType
senalNumber balance
rnsswc-rd creail imit name
it accountTyoe
bankiName bankName
customerNema #
customerAdcrass ControllerProblem
startlaz2 lime
Remole  |adtiveTransaution TransactionController stopDateTime
Transaction | » 0:) -
suantDateTime "
asdvaCard
CashCard = 571 ATMsession SesslonController
—0 | i . *
stariDataTime status
Account aclvedccount saloid

Figurn 1.6 ATM applicatinn c'ass madal. Sppication classes ap-men: the domai- class=s and 2
TRURRSaTY R Chei Gpnenl

3. Determining Controllers

» Controller is an active object that manages control within an application.

« Controller

Receives signals from the outside world or

— Receives signals from objects within the system,

— Reacts to them,

Invokes operation on the objects in the system, and
Sends signals to the outside world.

ATM Example

»  There are two controllers
— The outer loop verifies customers and accounts.
— The inner loop services transactions.

Dept. of CSE.

Page 96



Object Oriented Modeling and Design 15CS55
Userinterface Consortiuminterface
CashCardBoundary - " | AccountBoundary
barkCode benkCude
cardCocz accountCede ProblemType
seria Number balance
password craditlimn name
limit accountTyne
barkName henkMame
customarNamsa o
cuetomarAddrzss ControllerProblem
B o startDaiaTime
Remole | activeTransacton TransactionController stopDaleTine
Transaction * )1 : v
— stetDerTime e
acliveCand
CashCard | e w1 ATMsession SessionController
‘;“' 'L‘l - v =] (=3 * l I 3
Account ey P sle tDateTime status

Figure 13.8 AIM epchcetian elags medel. ARz 0 SB333s8 a10me ! ME caman DieEses ant ans

nazeszary o chudl oomant

Analysis Stereotypes

» <<boundary>> classes in general are used to model interaction between the system and

its actors.

s <<entity>> classes in general are used to model information that is long-lived and often

persistent.

» <<control>> classes are generally used to represent coordination, sequencing, transactions,
and control of other objects. And it is often used to encapsulate control related to a specific

use case.

The Realization of a Use Case in the Analysis Model

Use-Case Model

==frace==

Analysis Model

Use Case

Withdraw Money

Dispenser

{ Collaberation )

Withdraw Money

4 ) N
F J s,

¥4 | t \
/ 1 3 LY

OO O O

Cashier Withdrawal Account

Interface

A collaboration diagram for the Withdraw Money use-case realization in the analysis model

Dept. of CSE.

Page 97



Object Oriented Modeling and Design 15CS55

1:identify |"O

Pr : Cashier

% Interface

: Bank
Customer \

S:dispense money

2:request withdrawal

N

3:validate and withdraw

: Withdrawal A et

4:authorize dispense

:Dispenser

Example:Analysis Classes

 The diagram shows the classes participating in the Register for Courses use case

A O—K

Student

Register for Courses Coursg Catalog System
Use-Case

Analysis Modef (classes only listed — no relationships

<<poundary>> . boundans
RegisterForCoursesForm . .
RegistrationController CourseCatalogSystem
<<entity>> <<entity>> <<entity>>
Student Schedule CourseOffering

4. Checking Against the Interaction Model
»  Go over the use cases and think about how they would work.
When the domain and application class models are in pl., you should be able to simulate a

use case with the classes.

ATM Example

Dept. of CSE. Page 98



Object Oriented Modeling and Design

15CS55

Userinterface ‘ Consortiuminterface

CashCardBoundary = . AccountBoundary

barkCode bankCode

cardCode accountCade PrablemType

seralNarm e balarze

password creditl it name

it accourtTyoe

barkNama bankNzme
customarName =
custocmarAdcoress ContrallerProblem

startDateTive
Ramale |actvelransachion TransaclionController slopDzleTune

Transaclion | *

"l
stardDateTime *
activaCard S v——
CasnCard o1 1| ATMsession SessionController
0.1 | . TR x !
statDateTime slalus
Account [activaicnoar
Figure 155 ATMappiication casa mesdn’ Gepivalnn classes agment ke oocar cleasss 201

Application State Model

ook~ whE

The application state model focuses on application classes
Augments the domain state model
Application State Model- steps
Determine Application Classes with States
Find events
Build state diagrams
Check against other state diagrams
Check against the class model
Check against the interaction model
1. Determine Application Classes with States
Good candidates for state models
— User interf. classes
— Controller classes
ATM example
— The controllers have states that will elaborate.
2. Find events
Study scenarios and extract events.
In domain model
— Find states and then find events
In application model
— Find events first, and then find states
ATM example
— Revisit the scenarios, some events are:
— Insert card, enter password, end session and take card.
3. Building State Diagrams

To build a state diagram for each application class with temporal behavior.

Dept. of CSE.

Page 99



Object Oriented Modeling and Design 15CS55

Initial state diagram
— Choose one of these classes and consider a sequence diagram.
— The initial state diagram will be a sequence of events and states.
— Every scenario or sequence diagram corresponds to a path through the state
diagram.
Find loops
— If a sequence of events can be repeated indefinitely, then they form a loop.
Merge other sequence diagrams into the state diagram.
After normal events have been considered, add variation and exception cases.
The state diagram of a class is finished when the diagram covers all scenarios and the
diagram handles all events that can affect a state.
Identify the classes with multiple states
Study the interaction scenarios to find events for these classes
Reconcile the various scenarios
Detect overlap and closure of loops

SessionController |
card taken ( Taking card "“ ‘Ejecting card ™
\D_'sab'“ Joe—— do / reques! take carrl - Qdo /7 ﬂpict cnrzl )
A
comm up | comm down [no card]
[ comm down [has card)
o o ™~
& L Main screan \-
\u’o Zdisplay main :oou/
insert card
insert card [nc ploblom] Iprobliem]
/ counl:=
g _ s
7/ Getting password “\ (/ Problem card O / keep card
\do /request password)/ Jo /error message /‘
i bad - word ] A
pass
Rk SN | [count<n] / count+« bad password
B e ot [count>=n])
(’ Vedfvlng aocount \
do /venly account //
account OK
N / new TransactonController 22
( Servicing transactions ;)
lransactions fimshed OR cormm down
| Emitting
[z Electing card w Taking card  \ card taken ~@®)
7\ do /eject card ) = -\do /request take card " N
\/"i’nnllng recelpt " Taking receipt recaipttaken
\do /print receup(/ ( do /request lake recenp/ .,’
N SRS - A
Figure 13.9 State dingram for SassmanControfior. Bolkd o st daoraum o oach appbcalon clbes wilh arnposal Botvanos

Dept. of CSE. Page 100



Object Oriented Modeling and Design 15CS55

 SessionCentreller |

e tnd card taken Taking card -\"J ( ‘Ejecting aard\

e ) - | Ho S request take eard, efe J @jescet enrdj
= H -

SO U cormm dowie [no card]

CONT Jown [has card]

4 5y

Ty
_g_r"r Main screen =

\,_g’a Sdiaplay main BCrESN
nser!t crrd
imaar! card [no problem] [cmoblem]
|/ count=0 X
" Getting password “" Problem card }/ keep card_|
c da ¢ request pnsmard oo Serror message
‘b passwore
SIREr DASSWOIT | | et silcn] 4 oalints+ bad passward
o - o=
7~ Verifylng account ™, ey
(\ do s verity secoum J
account OK
new [ ransactionCont [l g
s / T ctionContnol| )
- : =
(\S-nrl-c.-ing Irnnsa::licnnj)
fransactions fnished OR cormum down
Emitting [
i ’Ehwﬂng card ™ i Taking card TN eard taken
. o £ eject card 4 do A request take card } = ‘:-.:-)
“Printing recelpt ™ " Taking recelpt - "@CSiD! faken 3
<o S print receipt G S Fequest take recei p},;'—'{

- _,

Figura 198 Sixte diagmm for Sassiontonirofer: Db i digemen lor snchosppbcsion sl wieb o Eebeics

TransactionContreller J
{'Fl'\n camm down
Ao l
f finishaa ancal N
[ i e - cancal
G’)‘"ﬁ' IMain screen e
— - =o', ofry # disney corrmano:s :
Solcar receipt log - V‘ R CONLRIE
1’” | ‘ | ‘\»\
withars ) | doposit fransfor | query
_ ot pe—N ; X
“wWithdrawal | d:Depesit | | tTransfer ) ( g-Ouery |
M A G AT N . : 7q° Ll ;
ha. % Jf
\'\ - N F’f

Figure 13,10 Skale Sagren or TarsolioeCorinoler. Ol il e o U s irios ol #ee il $on kel

Dept. of CSE. Page 101



Object Oriented Modeling and Design 15CS55

Transfer | - -,
" 4 Getling amount A
> sapyiscla !
N o S quary amount Y
enier amouniEmount;
- v -
‘/ Getting source account
|
\, dosquery source accourt
enlar accou souice)
- Y -
7 Getting larget account \‘

e s s ) s e, S T,
¢ Bad lransler \_ 0o/query target account ¢ Good transler
s do/complain ) \ oo Adisplay confirm ,

- » -~ enter account 'target) - -

- ¥ -
Ve 0.
£ Perform transler
not OK s o Zparform Iranslar J OK ! add to race of 2g
Figure 13.7Y State cagram tar lransrer (s daqiam eacorztes “ba franser siade i bigare 11070

4. check against other state diagrams
» Every event should have a sender and a receiver.
» Follow the effects of an input event from object to object through the system to make
sure that they match the scenarios.
»  Objects are inherently concurrent.
»  Make sure that corresponding events on different state diagrams are consistent.
* ATM example
« The SessionController initiates the TransactionController,
» The termination of the TransactionController causes the SessionController to
resume.
5. Check against the class model
* ATM example
— Multiple ATMs can potentially concurrently access an account.
— Account access needs to be controlled to ensure that only one update at a time is
applied.
6. Check against the interaction model
»  Check the state model against the scenarios of the interaction model.
» Simulate each behavior sequence by hand and verify the state diagrams.
»  Take the state model and tr. out legitimate paths.
Adding Operations
»  Operations from the class model
»  Operations from use cases
»  Shopping-list operations
»  Simplifying operations
Operations from the class model
» The reading and writing of attribute values and association links.
» Need not show them explicitly.
Operations from use cases

Dept. of CSE. Page 102



Object Oriented Modeling and Design 15CS55

Use cases lead to activities.
Many of these activities correspond to operations on the class model.
ATM example
— Consortium -> verifyBankCode.
— Bank - verifyPassword.
— ATM -> verifyCashCard
Shopping-List Operations
The real-world behavior of classes suggests operations.
Shopping-list operations provide an opportunity to broaden a class definition.
ATM example
Account.close()
— Bank.createSavingsAccount(customer):account
— Bank.createCheckingAccount(customer):account
Bank.createCashCard Auth(customer);cashCardAuthorization
Simplifying Operations
Try to broaden the definition of an operation to encompass similar operations.
Use inheritance to reduce the number of distinct operations.

ATM domain class model

Entered D | Trawrrscretion
¥ [ dateTime 1
' P
l Entrystation I [ .
Cashler Remote AuthorizadBy
N Transaction | | Transaction ==
I ¥
[ | - — Update
ATA CashierStation EntorodBy | _Cwaitend | amount
cashOnHand | sarialNumber Wirved
= 0.1 Cashici "
verityCashCard el ] - *
: O a e
o1 I i
Empiows Card
Authorization

I 1
staticn staton TR Iy e Asnuwiored
2823 | = = Rt

Consortium
Bank | . . addAccount
- nAarme card fesues rermoyvedcocount
wnlfy Ban kCode | 1.1 | close
bankCod verfyPassword | 2
;_"‘,_;‘”LI creataSavingeAcocount » » |
1 T' o 1 | ereateCheckngAccount
| createCashCardsuth | .
| accountiCode [ Customer
1 Account = PP —
halance address
7] eredilimit i
fvpe
cloes !

Firgurs 13.92 ATM domasin clsss modsl with soms sparations,

Overview of System Design

Dept. of CSE. Page 103



Object Oriented Modeling and Design 15CS55

0,
Summary of development process for the )55‘18
organized production of software N
System eUsers
conception .'ManagersDe"empers
requests
eBusiness
experts
Analysis: REcblem
statement

eDomain ,yeer

analysis interviews
sExperience

Build
models

*Applicati *Related
on systems

. Class model
analysis State model

Interaction model

Design:  “Architecture

OSystem eUse cases
design oAIg(')riFhm's models
eOptimization
oClass
design 2

» Analysis — focus is on what needs to be done; independent of how it is done
» Design — focus is on decisions about how the problem will be solved

— First at high level

— Then with more detail
»  System Design —

— first design stage

— Overall structure and style

— Determines the organization of the system into subsystems

— Context for detailed decisions about how the problem will be solved

System Design Activities

System Design

1. Design Goals
8 Boundary
Defnition Condi
Trade-d& onditions
Initizlization
T":ermmatlon
2. System sihre
Decomposition
: 1 Software
Contr
Monollthlc
Event-Driven
3.Concurrency Threads

Layers/Fartitions
Cohesion/Couplin

Identificationof 4, Hardware/ 5.D 6. Global Conc. Processes
. .Data :

Threads I
e " Managemen: Resourceanding
Specizl purpose Pelr<|stent Chjects Security
Buy or Build Trade—oﬁEata],aces
égf\%ﬂmw Data structure

Dept. of CSE. Page 104



Object Oriented Modeling and Design 15CS55

Estimate system performance
» To determine if the system is feasible
»  To make simplifying assumptions

ATM Example

*  Suppose
— The bank has 40 branches, also 40 terminals.
— On a busy day half the terminals are busy at once.
— Each customer takes one minute to perform a session.
— A peak requirement of about 40 transactions a minute.
— storage
— Count the number of customers.
— Estimate the amount of data for each customer.

Make a reuse plan
»  Two aspects of reuse:
— Using existing things
— Creating reusable new things
» Reusable things include:
Models
Libraries
— Frameworks
Patterns
Reusable Libraries
« Alibrary is a collection of classes that are useful in many contexts.
*  Qualities of “Good” class libraries:
— Coherence — well focused themes
— Completeness — provide complete behavior
— Consistency - polymorphic operations should have consistent names and signatures
across classes
— Efficiency — provide alternative implementations of algorithms
— Extensibility — define subclasses for library classes
— Genericity — parameterized class definitions
* Problems limit the reuse ability:
— Argument validation
» Validate arguments by collection or by individual
Error Handling
» Error codes or errors
— Control paradigms
»  Event-driven or procedure-driven control
Group operations
Garbage collection

DeBt. of CSE. Page 105



Object Oriented Modeling and Design 15CS55

— Name collisions

Reusable Frameworks
» A framework is a skeletal structure of a program that must be elaborated to build a
complete application.
» Frameworks class libraries are typically application specific and not suitable for general
use.
Reusable Patterns
» A pattern is a proven solution to a general problem.
» There are patterns for analysis, architecture, design, and implementation.
» A pattern is more likely to be correct and robust than an untested, custom solution.
» Patterns are prototypical model fragments that distill some of the knowledge of experts.
Pattern vs. Framework
» A pattern is typically a small number of classes and relationships.
» A framework is much broader in scope and covers an entire subsystem or application.
ATM example
» Transaction
»  Communication line
Breaking a System into Subsystem
» Each subsystem is based on some common theme, such as
— Similar functionality
— The same physical location, or
— Execution on the same kind of hardware.
Software Architecture

Breaking a System into Subsystem
» Asubsystem is a group of classes, associations, operations, events, and constrains.
» Asubsystem is usually identified by the services it provides.
» Each subsystem has a well-defined interf. to the rest of the system.

Dept. of CSE. Page 106



Object Oriented Modeling and Design 15CS55

» The relation between two subsystems can be
— Client-server relationship
— Peer-to-peer relationship
The decomposition of systems
»  Subsystems is organized as a sequence of
— Horizontal layers,
— Vertical partitions, or
— Combination of layers and partitions.
Layered system
» Each built in terms of the ones below it.
» The objects in each layer can be independent.
+ Eg
— A client-server relationship
» Problem statement specifies only the top and bottom layers:
— The top is the desired system.
— The bottom is the available resources.
» The intermediate layers is than introduced.
» Two forms of layered architectures:
— Closed architecture
» Each layer is built only in terms of the immediate lower layer.
— Open architecture
»  Alayer can use features on any lower layer to any depth.
» Do not observe the principle of information hiding.
Partitioned System
» Vertically divided into several subsystems
» Independent or weakly coupled
» Each providing one kind of service.
» E.g. A computer operating system includes
— File system
— Process control
— Virtual memory management
— Device control
Partitions vs. Layers
» Layersvary in their level of abstraction.
» Layers depend on each other.
 Partitions divide a system into pieces.
» Partitions are peers that are independent or mutually dependent. (peer-to-peer
relationship)

Dept. of CSE. Page 107



Object Oriented Modeling and Design 15CS55

Applications Applications

Open 0OS

VirtualLogix VLX

Memory § Memory |

Partition 1 Partition n

Combining Layers and Partitions

application packays
window craphics
ézaj{ar%l screen graphics g:‘;ﬁfsgn
pixel graghics
opzrating system
computer hardware

Figure 14.1 Block dlagram cf a tyoical apoilcaton.
PA IS larges wyesienns mix layens sod parlilions.

ATM Example
AT Consortium Bank
stations computer computers
] |
Cashier
ATM
Consortium | gf:.?g':
Cash comm —_—
Card link _Database
stabion comm Acccuni
: code link ’
e | Customer
bank
. Lecr Card
interiace. eode | || Authorization
e :
Transaction | | | Transaction Transaction

Figure 14.2 Architactire nf ATAY system. {is ~Ian elphil to mave anirdoema dagowr shawing tha ciganization -1
4 £vsletn 110 sulsks

Identifying Concurrency
* Toidentify
— The objects that must be active concurrently.
— The objects that have mutually exclusive activity

Dept. of CSE. Page 108



Object Oriented Modeling and Design 15CS55

Inherent Concurrency

By exam the state model

Two objects are inherently concurrent if they can receive events at the same time without
interacting.

If the events are unsynchronized, you cannot fold the objects onto a single thread of
control.

Defining Concurrent Tasks

By examining the state diagrams, you can fold many objects onto a single thread of
control.
A thread of control is a path through a set of state diagrams on which only a single object
at a time is active.
ATM example:

— Combine the ATM object with the bank transaction object as a single task.

Allocation of Subsystems

Allocate each concurrent subsystem to a hardware unit by
— Estimating hardware resource requirements
— Making hardware-software trade-offs
— Allocating tasks to processors
— Determining physical connectivity

Estimating hardware resource requirements

The number of processors required depends on the volume of computations and the speed
of the machine

Example: military radar system generates too much data in too short a time to handle in
single CPU, many parallel machines must digest the data

Both steady-state load and peak load are important

Making hardware-software trade-offs

You must decide which subsystems will be implemented in hardware or software
Main reasons for implementing subsystems in hardware

— Cost -

— Performance — most efficient hardware available

Allocating tasks to processors

Allocating software subsystems to processors
Several reasons for assigning tasks to processors.
— Logistics — certain tasks are required at specified physical locations, to control
hardware or permit independent operation
— Communication limits
— Computation limits — assigning highly interactive systems to the same processor,
independent systems to separate processors

Determining physical connectivity

Dept. of CSE. Page 109



Object Oriented Modeling and Design 15CS55

» Determine the arrangement and form of the connections among the physical units
— Connection topology- choose an topology for connecting the physical units
— Repeated units-choose a topology of repeated units
— Communications- choose the form of communication channels and communication
protocols
Management of Data Storage
» Alternatives for data storage:
— Data structures,
— Files,
— Databases
Data Suitable for Files
» Files are cheap, simple, and permanent, but operations are low level.

B Data with high valome and Tow information density {such as archival files or his-
orical records),

W Modest quanritics of data with simple structune,

B Data that are accessed sequentially.

B Daca thar can be fully read into memaory,

Data Suitable for Databases
« Database make applications easier to port, but interf. is complex.

Data that require updates at fine levels of detail by multiple users.
Data that must be accessed by multiple application programs.
Data that require coordinated updates via transactions.

Large quantities of Jats that must be handled elficiently.

Data that arc long-lived and highly valuable to an organization.

Data that inust be secured against unauthorized and malicious access.

Figure 14.4 Duls suilabbe lor dalabisses. Dislalneses providh Insespweig il it teenaegormen wind s osiead o) mpoks |
CUGNCGS CpRAZalong

Handling Global Resources
»  The system designer must identify global resources and determine mechanisms for
controlling access to them.
» Kinds of global resources:
— Physical units

Dept. of CSE. Page 110



Object Oriented Modeling and Design 15CS55

*  Processors, tape drivers...
— Sp.s

» Disk sp.s, workstation screen...
— Logical name

* Object ID, filename, class name...
— Access to shared data

» Database

*  Some common mechanisms are:
— Establishing “guardian” object that serializes all access
— Partitioning global resources into disjoint subsets which are managed at a lower
level, and
— Locking
ATM example
» Bank codes and account numbers are global resources.
» Bank codes must unique within the context of a consortium.
» Account codes must be unigue within the context of a bank.
Choosing a Software Control Strategy
» To choose a single control style for the whole system.
«  Two kinds of control flows:
— External control
— Internal control
Software External Control
» Concerns the flow of externally visible events among the objects in the system.
« Three kinds:
— Procedure-driven sequential
— Event-driven sequential
— Concurrent
Procedure-driven Control
» Control resides within the program code
» Procedure request external input and then wait for it
* When input arrives, control resumes with in the procedure that made the call.
» Advantage:
» Easy to implement with conventional languages
» Disadvantage:
» The concurrency inherent in objects are to mapped into a sequential flow of
control.
» Suitable only if the state model shows a regular alternation of input and output events.
» C++ and Java are procedural languages.

Dept. of CSE. Page 111



Object Oriented Modeling and Design 15CS55

» They fail to support the concurrency inherent in objects.
Event-driven Control
»  Control resides within a dispatcher or monitor that the language, subsystem, or operating
system provides.
» The dispatcher calls the procedures when the corresponding events occur.
Software Internal Control
» Refer to the flow of control within a process.
» To decompose a process into several tasks for logical clarity of for performance.
» Three kinds:
— Procedure calls,
— Quasi-concurrent intertask call,
» Multiple address sp.s or call stacks exist but only a single thread of
control can be active at once.
— Current intertask calls
Handling Boundary Conditions
»  Most of system design is concerned with steady-state behavior, but boundary conditions
are also important
» Boundary conditions are
— Initialization
— Termination, and
— Failure
+ Initialization
— The system must initialize constant data, parameters, global variables, ...
« Termination
— Release any external resources that it had reserved.
» Failure
— Unplanned termination of a system. The good system designer plans for orderly
failure
Setting Trade-off Priorities
» The priorities reconcile desirable but incompatible goals.
— E.g memory vs. cost
» Design trade-offs affect the entire character of a system.
» The success of failure of the final product may depend on how well its goal s are chosen.
» Essential aspect of system architecture is making trade-offs between
— time and sp.
— Hardware and software
— Simplicity and generality, and
— Efficiency and maintainability
» The system design must state the priorities

Common Architectural Styles
» Several prototypical architectural styles are common in existing system.
+  Some kinds of systems:

— Batch transformation } Functional transformations

Dept. of CSE. Page 112



Object Oriented Modeling and Design 15CS55

— Continuous transformation
Interactive interf.

— Dynamic simulation } Time-dependent systems
— Real-time system
— Transaction manager -> Database system

Batch transformation

— Perform sequential computation.
» The application receives the inputs, and the goal is to compute an answer.
» Does not interact with the outside world
+ Eug.

— Compiler

— Payroll processing

— VLSI automatic layout
» The most important aspect is to define a clean series of steps

» Sequence of steps for a compiler
AT o

{ abstractto ) (” generate
| OOmodel /| | dbcode )
A A A
\, / \
Vi X
Cass Databzase
Macel Code

7 ) / .
( parse \l [ determine i
lext ) \ oarneclwlty/\

i, U —

L
ASCIl Graphics Conrectivity
File Model Madel

Figure 14.5 Sequence of steps for a compiler. A bztch rangormation is a sequent al
input-to-aulpet ransformaton tha: does nat interect with the autside world
The steps in designing a batch transformation are as follows
— Break the overall transformation into stages, with each stage performing one part of
the transformation.
— Prepare class models for the input, output and between each pair of successive
stages. Each stage knows only about the models on either side of it.
— Expand each stage in turn until the operations are straightforward to implement.
— Restructure the final pipeline for optimization.
Continuous transformation
— The outputs actively depend on changing inputs.
— Continuously updates the outputs (in practice discretely )
- E.q
» Signal processing
*  Windowing systems
» Incremental compilers
»  Process monitoring system
— Sequence of steps for a graphics application

Dept. of CSE. Page 113



Object Oriented Modeling and Design 15CS55

rd ~ " L, 7 \ -~ ™~
lf parsa 'l [ detarmine / abstractto \ [ generate \
text \ connectivi: \ CO model ) db ccde
a7 nidscon 7 ¥,
/ N 7 7

Y \\‘ /\ P
ASCII Graphics i Connectivity Class Database
Model i Model Vodel Code

File
Figure 14.5 Scquence of stepa for a compiler. 2 batch ranafarmaton is a sequential
iIrpat-to-output transtermation thal does ng: interact with the cutside waorld

— Steps in designing a pipeline for a continuous transformation are as follows
o Break the overall transformation into stages, with each stage
performing one part of the transformation.
o Define input, output and intermediate models between each pair of
successive stages as for the batch transformation
o Differentiate each operation to obtain incremental charges to each
stage.
o Add additional intermediate objects for optimization.
Interactive interf.
— Dominated by interactions between the system and external agents.
Steps in designing an interactive interf. are as follows
v' Isolate interf. classes from the application classes
Use predefined classes to interact with external agents
Use the state model as the structure of program
Isolate physical events from logical events.
Fully specify the application functions that are invoked by the interf.

AN NI NN

Dynamic simulation
— Models or tracks real-world objects.
— Steps in designing a dynamic simulation
 ldentify active real-world objects from the class model.
+ ldentify discrete events
+ Identify continuous dependencies
»  Generally simulation is driven by a timing loop at a fine time scale
Real-time system
— An interactive system with tight time constraints on actions.
Transaction manager
— Main function is to store and retrieve data.
— Steps in designing an information system are as follows
* Map the class model to database structures.
»  Determine the units of concurrency
»  Determine the unit of transaction
» Design concurrency control for transactions

Architecture of the ATM system

Dept. of CSE. Page 114



Object Oriented Modeling and Design 15CS55
ATM Consortium Bank
stations computer computers
[ — — ]| 1
ATM
|Consortium| ‘ g?ast?:g
Cash comm
Card link — Database

l Uscr
user

interfacs

Transaction I

T

slalio
code

bank
code

ol it lTransaction J

comm
link

[

Card
Authorization

Transaction

Figure 13.2 Architecture of ATM system. It s chen helplul 1o make n indormal clagram showing ihe orzanizzton cf

a s¥s%m 1o subsystams

Dept. of CSE.

Page 115



Object Oriented Modeling and Design 15CS55

Unit-6: Class Design, Implementation modeling

7 Hours

Syllabus:

» Class Design: Overview of class design;

» Bridging the gap; Realizing use cases; Designing algorithms; Recursing downwards,
Refactoring;

> Design optimization; Reification of behavior; Adjustment of inheritance; Organizing a

class design;

ATM example.

Implementation Modeling: Overview of implementation; Fine-tuning classes; Fine-

tuning generalizations; realizing associations; Testing.

Legacy Systems: Reverse engineering;

Building the class models; Building the interaction model;

Building the state model; Reverse engineering tips; Wrapping; Maintenance.

Y VvV

Y VYV VY

Class design

The analysis phase determines what the implementation must do

The system design phase determines the plan of attack

The purpose of the class design is to complete the definitions of the classes and
associations and choose algorithms for operations

Overview of Class Design — steps

1.

B © oo~ OkR WD

Bridging the gap
Realizing Use Cases
Designing Algorithms
Recursing Downward
Refactoring

Design Optimization
Reification of Behavior
Adjustment of Inheritance
Organizing a Class Design
Bridging the gap

Bridge the gap from high-level requirements to low-level services

Dept. of CSE. Page 116



Object Oriented Modeling and Design 15CS55

Desired features

The gap ‘7

Available resources

Figure 15.1 The design gap. There is often a discomed between the desired features
&nd the avalable 1escurcas.

e Salesman can use a spreadsheet to construct formula for his commission — readily build
the system

* \Web-based ordering system — cannot readily build the system because too big gap
between the resources and features

® The intermediate elements may be operations, classes or other UML constructs.
® You must invent intermediate elements to bridge the gap.

Desired features 9 J
1 Ry o
\ N *
\ - I /
\ > e B ;
tutermiediate elements { I l
3 e \ '\_‘
> /\., - \ \
..’/ /// { \ \
— S— —
Available resources [ ]
Figure 15.2 Endging the gap. YoJ ru.slinvent narmadizie alemn:znle t© bndan 1o Q:p Dotwaer
he doseod Fzares: ond 170 avol akdo resouicos
2. Realizing Use Cases
e Realize use cases with operations.
® The cases define system-level behavior.
[ ]

During design you must invent new operations and new objects that provide this
behavior.

e Stepl: List the responsibilities of a use case or operation.

Dept. of CSE. Page 117



Object Oriented Modeling and Design 15CS55

® A responsibility is something that an object knows or something it must do.
e For Example:
e Anonline theater ticket system
e Making a reservation has the responsibility of
¢ Finding unoccupied seats to the desired show,
e Marking the seats as occupied,
e Obtaining payment from the customer,
® Arranging delivery of the tickets, and
e Crediting payment to the proper account.

e Step2: Each operation will have various responsibilities.

e Group the responsibilities into clusters and try to make each cluster coherent.
e Step3: Define an operation for each responsibility cluster.
e Step4: Assign the new lower-level operations to classes.

ATM Example
® Process transaction includes:
e Withdrawal includes responsibilities:

e Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that ATM
has sufficient cash, ....

e A database transaction ensures all-or-nothing behavior.

e Deposit
e Transfer
Use Case for the ATM

Dept. of CSE. Page 118



Object Oriented Modeling and Design 15CS55

ATH

o

“initiata o

I —_ 3
sasslon ——
ll e
, —— |
P = ;

p e e
- # query \F, ey ,
= -\ mccount , ,

— ‘M_ - _‘“n_ 1

—H‘.\f-\-..

e
Jr
L)
R
P

it Pt “process \)_‘_, T .y
iransadlarl ' Cang[hurn

R
fr i
o

e s..i’ -«

transmit
l- data j

e

Fiamuree 181 [Ism r5esee dimorsam ‘oc (e BT | Ba e eeeth anoilee

® Process transaction includes:
e Deposit includes responsibilities:
e Get amount from customer, accept funds envelope from customer, ...
e Transfer includes responsibilities:
e (et source account, get target account, get amount, verify that source
account covers amount, ...
There is some overlap between the operations.
A reasonable design would coalesce this behavior and build it once.
Designing Algorithms
Formulate an algorithm for each operation
The analysis specification tells what the operation does for its clients
The algorithm show how it is done

e o 0 W o o

TN
ST

e
1

Designing Algorithms- steps
i.  Choose algorithms that minimize the cost of implementing operations.
ii.  Select data structures appropriate to the algorithms
iii.  Define new internal classes and operations as necessary.
iv.  Assign operations to appropriate classes.
i. Choosing algorithms (Choose algorithms that minimize the cost of implementing
operations)
» When efficiency is not an issue, you should use simple algorithms.
» Typically, 20% of the operations consume 80% of execution time.
» Considerations for choosing alternative algorithms
o Computational complexity
o Ease of implementation and
understandability o Flexibility

Dept. of CSE. Page 119



Object Oriented Modeling and Design 15CS55

= Simple but inefficient
= Complex efficient
» ATM Example
o Interactions between the consortium computer and bank computers
could be complex.

o Considerations:
= Distributed computing
= The scale of consortium computer (scalability)
= The inevitable conversions and compromises in coordinating

the various data formats.

o All these issues make the choice of algorithms for coordinating the
consortium and the banks important

The ATM Case Study

S ®)
\:/ N
— | Cashiar [—
o A Slation A
(J,:_J | e \\\ AL
ATM | M Account|
AL VIR Bank [ -
N \_\ /,,f Computar| —_—
| \\\ /,/‘/, 3 A:coumj
ATM [~ Central
™~~~ -
~- Computer ‘ r
5 i I~ ey~ Avount |
A . Bank I~ =
 E— L Computer
| -~ .
ATM | 1 Aczount

)

Figure 11.3 ATM network. “he ATM case study threads threughou: tha remainder cf thiz bool

ii. Choosing Data Structures (select data structures appropriate to the algorithm)
a. Algorithms require data structures on which to work.
b. They organize information in a form convenient for algorithms.
c. Many of these data structures are instances of container classes.
d. Such as arrays, lists, queues, stacks, set...etc.
iii. Defining New Internal Classes and Operations
a. Toinvent new, low-level operations during the decomposition of high-level
operations.
b. The expansion of algorithms may lead you to create new classes of objects to
hold intermediate results.
c. ATM Example:
i. Process transaction uses case involves a customer receipt.
ii. A Receipt class is added.
iv. Assigning Operations to Classes (assign operations to appropriate classes)
a. How do you decide what class owns an operation?
i. Receiver of action

Dept. of CSE. Page 120



Object Oriented Modeling and Design 15CS55

1. To associate the operation with the target of operation, rather
than the initiator.
b. Query vs. update
i. The object that is changed is the target of the operation
c. Focal class
i. Class centrally located in a star is the operation’s target
d. Analogy to real world

ATM Example
® Process transaction includes:
e Withdrawal includes responsibilities:

e Get amount from customer, verify that amount is covered by the account
balance, verify that amount is within the bank’s policies, verify that ATM
has sufficient cash, ....

e A database transaction ensures all-or-nothing behavior.

e Deposit
e Transfer
e Customer.getAccount(), account.verifyAmount(amount), bank.verifyAmount(amount),
ATM.verifyAmount(amount)

Dept. of CSE. Page 121



Object Oriented Modeling and Design 15CS55

tntaredOn Transaciion
*| dateTime
' T
EntryStation ﬁ
~ Cashier Remote | Authorizedby
= Transaction | | Transaction | %
M #® 2 ‘"‘",’3
ATM CashierSlatian S
EnlevedBy 0.1 Update
cask CnHanc 1
0.1 — Recelpt amaoJnt
verifyCcshCard Cashier kind
verifyAmount e | -
disbiursekunds: name vosiTransaction &
receiveFunds 011 *
0.1
Cmploys 1
| | | Cashiard CardAuthortzation
slation station loy=e| | ScrialNumbeor O
Leven | [ogicn]|  [cmey pessworo
Bank - limit
Consortium an L
addACC?\:‘H
name ' removeAccount
varl o card Issues
amybetende verfyPassword Q;—u s
| bankCode ] create SavirgsAccount + *
& createCheckingAccourt
1T 0.1 craateCashCarnd 1
'-‘ »
verfyAmour: Ciatormsr
| aczeurtCode | Account
| nama
1 balance * acdress
credillim L temoAmount
n 1| tyoe
S getzr-roun:
O Account
vardyAmount 2 i
debit
uradil 1

Fiqure 18,4 ATM dormssin dose mode’ wilh somwe duse desisn vlaboralions,

4. Recursing Downward

e To organize operations as layers.
e QOperations in higher layers invoke operations in lower layers.
e Two ways of downward recursion:
e By functionality
e By mechanism
* Any large system mixes functionality layers and mechanism layers.
Functionality Layers
® Take the required high-level functionality and break it into lesser operations.
e Make sure you combine similar operations and attach the operations to classes.
e An operation should be coherent meaningful, and not an arbitrary portion of code.
e ATM eg., use case decomposed into responsibilities (see sec 15.3). Resulting
operations are assigned to classes (see sec 15.4.4). If it is not satisfied rework them

Dept. of CSE. Page 122



Object Oriented Modeling and Design 15CS55

Uye case Q
g X

Respois|bilfiles - - -
1 R ;
es « OOg O

Gperaticns

Angigh t¢ Slasges
Mechanism Layers
e Build the system out of layers of needed support mechanisms.
® These mechanisms don’t show up explicitly in the high-level responsibilities of a system,
but they are needed to make it all work.
e E.g. Computing architecture includes
e Data structures, algorithms, and control patterns.
e A piece of software is built in terms of other, more mechanisms than itself.

’r‘ Alr Condlnonef

' J nntrol
.Nlndaws MT Elaatar Cantee
server
Entrznee Zontrel

ire Alaem System

5. Refactoring
e Refactoring
= Changes to the internal structure of software to improve its design without
altering its external functionality.
e You must revisit your design and rework the classes and operations so that they clean
satisfy all their uses and are conceptually sound.

Dept. of CSE. Page 123



Object Oriented Modeling and Design 15CS55

ATM Example
e Qperations of process transaction
= Account.credit(amount)
= Account.debit(amount)
e Combine into
= Account.post(amount)
6. Design Optimization
e To design a system is to first get the logic correct and then optimize it.
e Often a small part of the code is responsible for most of the time or sp. costs.
® |t is better to focus optimization on the critical areas, than to spread effort evenly.
Design Optimization
e Optimized system is more obscure and less likely to be reusable.
® You must strike an appropriate balance between efficiency and clarity.
e Tasks to optimization:
i.  Provide efficient access paths.
ii.  Rearrange the computation for greater efficiency.
iii.  Save intermediate results to avoid recomputation.
i. Adding Redundant Associations for Efficient Access
v Rearrange the associations to optimize critical aspects of the system.
v Consider employee skills database

Empioys HasSkill
Company |- Lol i +1 Person ———— Skill
Figure 13.5 Anayais mddel ‘or person sqlla. Daives ceta 3 uncearatls
during snaleis De2aEe 1 4268 N0 ade irformadion

v Company.findSkill( ) returns a set of persons in the company with a given skill.

v Suppose the company has 1000 employees,.

v"In case where the number of hits from a query is low because few objects satisfy
the test, an index can improve access to frequently retrieved objects.

J Speakslanguaye
&
language | e
Company | person | HESSKE | gy

Figure 156 Dasign model for person skilla, Corived date is acezptab e during
resion for opmrakns tha Ae s grificart peciormsnca bott enachs

v Examine each operations and see what associations it must traverse to obtain its
information.
v Next, for each operation, note the following,
® Frequency of access
® Fan-out
e Selectivity
ATM Example

«  Banks must report cash deposits and withdrawals greater than $10,000 to the government.

Dept. of CSE. Page 124



Object Oriented Modeling and Design 15CS55

e Tr.from
— Bank to Account,
— Account to Update,
— Then filter out the updates that are cash and greater than $10,000
» Aderived association from Bank to Update would speed this operation.
ii. Rearranging Execution Order for Efficiency
v’ After adjusting the structure of class model to optimize frequent traversals,
the nextthing is
v To optimize the algorithm
i. To eliminate dead paths as early as possible
ii. To narrow the search as soon as possible
iii. Sometimes, invert the execution order of a loop

iii. Saving Derived Values to Avoid Recomputation
v There are three ways to handle updates
i. Explicit update
ii. Periodic recomputation
iii. Active values
Reification behavior
»  Behavior written in code is rigid; you can execute but cannot manipulate it at run time
» If you need to store, pass, or modify the behavior at run time, you should reify it
Adjustment of Inheritance
» Toincrease inheritance perform the following steps
— Rearrange classes and operations to increase inheritance
— Abstract common behavior out of groups of clusters
— Use delegation to share behavior when inheritance is semantically invalid
Rearrange classes and operations to increase inheritance
»  Use the following kinds of adjustments to increase the chance of inheritance
— Operations with optional arguments
— Operations that are special cases
— Inconsistent names
— Irrelevant operations
Use delegation to share behavior when inheritance is semantically invalid
» When class B inherits the specification of class A, you can assume that every instance of
class B is an instance of class A because it behaves the same
» Inheritance of implementation — discourage this
» One object can selectively invoke the desired operations of another class, using
delegation rather than inheritance
» Delegation consists of catching operation on one object and sending it to a related object
» Delegate only meaningful operations, so there is no danger of inheriting meaningless
operations by accident

Dept. of CSE. Page 125



Object Oriented Modeling and Design 15CS55

Stack Lat ol TN

ha /st ipavara) ke, £ g
pLsh acc / Rdd

fuf renove roove
fitsl e N

st \Est \
Rzcuonnmnended Cesign \ \
(Nelegation ;

Decoiraged  \ \r.\u\sn :) /

dasian \\‘ o~ — J

Implementation Inheritance

*+ A very similar class is already implemented that does
almost the same as the desired class implementation.

« Example: | have a List List

class, | need a Stack Add() PO,

class. How about Remove()

subclassing the Stack ~ “Already

class from the List class mplemented”

and providing three

methods, Push() and PiiCk T

Pop(), Top()? —p—(5)—| ,

o0 1 | Remove(0)

Toéii 5[\

?
+ Problem with implementation inheritance:

+ Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

» Close coupling — what happens if the Add() method is changed?



Object Oriented Modeling and Design 15CS55

Problem with implementation inheritance

+ How to avoid the following problem?

Some of the inherited operations might exhibit unwanted behavior.
What happens if the Stack user calls Remove() instead of Pop()?

1. Delegation MyStack List
Client +Push() |—
+Pop() Remove()
+Top() Add()
2. Interf. inheritance
Stack
Client +Push() Remember this
+Pop() structure!!
+Top()
| |
|

MyStack List

HerStack YourStack

Delegation as alternative to Implementation Inheritance

» Delegation is a way of making composition (for example aggregation) as powerful for
reuse as inheritance

In Delegation two objects are involved in handling a request
— Arreceiving object delegates operations to its delegate.

The developer can make sure that the receiving object does not allow the client to misuse the
delegate object

client S| Receiver| Delegatestd pelegate

Dept. of CSE. Page 127



Object Oriented Modeling and Design 15CS55

Delegation instead of Implementation

Inheritance
+ Inheritance: Extending a Base class by a new operation or
overwriting an operation.
+ Delegation: Catching an operation and sending it to another

object.
+ Which of the following models is better for implementing a
stack?
List
+Add() Stack List
Q +Remove()_ (:é
+Push Remove
St?:k +Pop()() Add()
+Top()
+Push()
+Pop()
+Top()

Organization of Class Design
» We can improve the organization of a class design with the following steps:
— Information hiding
— Coherence of Entities
— Fine-tuning packages
Information hiding
» Carefully separating external specification from internal specification
» There are several ways to hide information:
Limit the scope of class-model traversals
Do not directly access foreign attributes
— Define interf.s at a high level of abstraction
— Hide external objects
Avoiding cascading method calls
Coherence of Entities
= An entity, such as a class, an operation or a package is coherent if it is organized on a
consistent plan and all its parts fit together toward a common goal.
=>» An entity should habve a single major theme
=>» It should not be a collection of unrelated parts.

Fine — Tuning Packages
» Overview of Implementation
» Fine-tuning Classes
» Fine-tuning Generalization
» Realizing Associations
» Testing

Fine-tuning classes

Dept. of CSE. Page 128



Object Oriented Modeling and Design

15CS55

Fine tune classes before writing code in order to simplify development or to improve

performance
Partition a class
Merge classes

Partition / merge attributes
Promote an attribute / demote a class

Fine-tuning classes — partition a class
e Sometimes it is helpful to fine-tune a model by partitioning or merging classes
e partitioning of a class can be complicated by generalization and association

Fine-tuning classes — partition / merge attributes

PhoneMumozr
pkonzNurber

Fine-tuning classes — promoting an attribute / demote a class

Persun
name

pkoneNJmoer
wedrzss

PhoneMumber

sounl ryCude
urevColde
ccaltumber

Persur

— | name

phorelumber

Persun

Address

name
pkonehlamoer

strcetlcdrossp—

— Address

sireel Address
city
stafzProvinze

7 postalCade

Fine-tuning generalizations

Dept. of CSE.

—1  Cily
cityMName —‘

SlulePruvsiun

stareProvisonMName

Pnstalrne

pestalzode

Page 129



Object Oriented Modeling and Design 15CS55

TreditionConcept

traarficrConcept

\
Language Fhrcse Lunguuge —| Phruse
We =tring
t | o1
acrl
= ckild

Mn\rrl anqinge Mircrl anaqlinge

Realizing associations
® Associations are “glue” of the class model, providing access paths between objects

® Analyzing associations by traversing associations

Colrvmni

Cifammci

Analyzing Association Traversal
e Until now we assumed that associations are bidirectional

e But some applications are traversed in only one direction
* We may add another operation that make traversal in reverse direction
Navigability
e Possible to navigate from an associating class to the target class — indicated by arrow which
is pl.d on the target end of the association line next to the target class (the one being

navigated to).
e Associations are bi-directional by default — suppress arrows.
e Arrows only drawn for associations with one-way navigability.

i g : Cliesd LRV
Bi-direoiicnai Y
Do e e e
[ IR C e
Lni-directianal || et A Tiascd

v Navigability is inherently a design and implementation property.
v Can be specified in Analysis, but with expectation of refining in Class Design.
v In analysis, associations are usually bi-directional; design, we really check this.

Example: Navigability

Dept. of CSE. Page 130



Object Oriented Modeling and Design 15CS55

=<zhouldary=> . ~=coantrol~~
ReuyisleiFuiSuLisesFunm - > | Kzqistration_entrolier

ARagistarForCoursesFomr invokas a single RagistrationController tha: will
prozess the registrazior forthz curent Student. “he RegistraticnZont-oller wil
never need to communicate cirect y o 1h2 Registel o-Cou-seslorm

z<eniity==
CuuseOllering

Here, two way. You can ask a Scacdu cwhat
Course Ofr2rngs ltcontalns end voucan ask  Z-way 1avigainos
a Courss Of‘ering wha: Schedulss itappszrs cn

One-way Associations
e Implement one-way associations using pointer- an attribute that contains the object
reference
e Actual implementation of pointer using
e Programming language pointer or
e Database foreign key
e If the multiplicity is “one” then it is a sSimple pointer
e If the multiplicity is “many” then it is a set of pointers
WrhsFr

- %

Ciass
=

pepee—— L

panentatc
nmngal

Two-way Association
® Many associations are traversed in both directions, not usually with equal frequencies
® Three approaches for implementation
¢ Implement one-way
® Implement two-way
e Implement with an association object

Dept. of CSE. Page 131



Object Oriented Modeling and Design 15CS55

Testing
e Unit testing
e System testing

Dept. of CSE. Page 132



Object Oriented Modeling and Design 15CS55

UNIT -7 DESIGN PATTERNS - 1:
Syllabus : - 6hrs

What is a pattern

what makes a pattern?

Pattern categories;
Relationships between patterns;
Pattern description.
Communication Patterns:
Forwarder-Receiver;
Client-Dispatcher-Server;
Publisher-Subscriber.

Patterns
Patterns help you build on the collective experience of skilled software
engineers.

They capture existing, well-proven experience in software development and help to
promote good design practice.

Every pattern deals with a specific, recurring problem in the design or implementation of
a software system.

Patterns can be used to construct software architectures with specific
properties

What is a Pattern?

Abstracting from specific problem-solution pairs and distilling out
common factors leads to patterns.

These problem-solution pairs tend to fall into families of similar
problems and solutions with each family exhibiting a pattern in ~ both the problems and
the solutions.

Definition :
The architect Christopher Alexander defines the term pattern as

Each pattern is a three-part rule, which expresses a relation between a
certain context,

a problem, and

a solution.

Dept. of CSE. Page 133



Object Oriented Modeling and Design 15CS55

As an element in the world, each pattern is a relationship between a certain
context, a certain system of forces which occurs repeatedly in that context, and a certain
spatial configuration which allows these forces to resolve themselves.

As an element of language, a pattern is an instruction, which shows how
this spatial configuration can be used, over and over again, to resolve the given system of
forces, wherever the context makes it relevant.

The pattern is, in short, at the same time a thing, which happens in the
world, and the rule which tells us how to create that thing. And when we must create it. It
is both a process and a thing: both a description of a thing which is alive, and a description
of the process which will generate that thing.

Properties of patterns for Software Architecture

% A pattern addresses a recurring design problem that arises in specific
design situations, and presents a solution to it.

s Patterns document existing, well-proven design experience.

% Patterns identify & and specify abstractions that are above the level of
single classes and instances, or of components.

% Patterns provide a common vocabulary and understanding for design  principles

€

Patterns are a means of documenting software architectures.

*

Patterns support the construction of software with defined properties.

X4

Patterns help you build complex and heterogeneous software

L)

architectures «+ Patterns help you to manage software complexity
Putting all together we can define the pattern as:
Conclusion or final definition of a Pattern:
A pattern for software architecture describes a particular recurring design problem that
arises in specific design contexts, and presents a well-proven generic scheme for its

solution. The solution scheme is specified by describing its constituent components, their
responsibilities and relationships, and the ways in which they collaborate.

What Makes a Pattern?

Three-part schema that underlies every pattern:

Dept. of CSE. Page 134



Object Oriented Modeling and Design 15CS55

Context: a situation giving rise to a problem.
Problem: the recurring problem arising in that context.

Solution: a proven resolution of the problem.
Context:

e The Contest extends the plain problem-solution dichotomy by describing the
situations in which the problems occur

e Context of the problem may be fairly general. For eg: “developing software with a
human-computer interf.”. On the other had, the contest can tie specific patters together.

e Specifying the correct context for the problem is difficult. It is practically
impossible to determine all situations in which a pattern may be applied.

Problem:

o This part of the pattern description schema describes the problem that arises
repeatedly in the given context.

. It begins with a general problem specification (capturing its very essence what
is the concrete design issue we must solve?)

o This general problem statement is completed by a set of forces

o Note: The term ‘force denotes any aspect of the problem that should be
considered while solving it, such as

o Requirements the solution must fulfill

o Constraints you must consider

o Desirable properties the solution should have.

o Forces are the key to solving the problem. Better they are balanced, better the
solution to the problem
Solution:

. The solution part of the pattern shows how to solve the recurring problem(or
how to balance the forces associated with it)

. In software architectures, such a solution includes two aspects:

Every pattern specifies a certain structure, a spatial configuration of elements.
This structure addresses the static aspects of the solution. It consists of both components
and their relationships.

Every pattern specifies runtime behavior. This runtime behavior addresses the
dynamic aspects of the solution like, how do the participants of the patter collaborate? How
work is organized between then? Etc.

o The solution does not necessarily resolve all forces associated with the
Problem.

e A pattern provides a solution schema rather than a full specified artifact or blue
print.

e No two implementations of a given pattern are likely to be the same.

Dept. of CSE. Page 135



Object Oriented Modeling and Design 15CS55

e The following diagram summarizes the whole schema.

Pattern

—— Context

L Design situation glving rise to a design prodlem
L Problem

L Set of furees repeatedly artsing in the context

—— Solution
L. Configuration to balance the forces

l: Structure with components and relationships

Run-time behaviour

Pattern Categories
we group patterns into three categories:

» Architectural patterns
» Design patterns
> Idioms

Each category consists of patterns having a similar range of scale or abstraction.

Architectural patterns

e Architectural patterns are used to describe viable software architectures that are
built according to some overall structuring principle.

e Definition: An architectural pattern expresses a fundamental structural
organization schema for software systems. It provides a set of predefined subsystems,
specifies their responsibilities, and includes rules and guidelines for organizing the
relationships between them.

e Eg: Model-view-controller pattern.

Structure->

Dept. of CSE. Page 136



Object Oriented Modeling and Design 15CS55
Model
~Encapsu'aes epplicaticn state
* Bespunds Lo slale gueres
* Exposes aplication
*Noll'les viaws Df chiangss
Controller
URanders the models » DRfines applitat on fahAvin®
- Reduests Updetes from mod=1s : ua;c’u;e;;dmns L
*Se1ds user gestures {o Conlicle |eee Uil "‘p, 'Gf
- Allaws costrolle”to sefect view Uerest’m? eSAeciENiawiorrespon e
» Onafor each functisnal tv
Moathod Invocaticng
1] | Events
. Event Is possed
o the Conirolier
Confrelier
. Model or View(s
: Views get dota
View View -
S - from Model
‘\
s
-
- -
- L
m : .. Model updates Views
whan dala changes
Dept. of CSE. Page 137



Object Oriented Modeling and Design 15CS55

Eg:
" Controller A
Oass
= Ewvents
o Load
7 Save \
Execute £vent Gontaier
Update Megdz!

( View \
Qass (e ” a
‘ " Student 2) ) ( GradeCard
I Field Oass ‘ | Cass
| S +* StudentHistory |

") e =

J¢ Name _ Update view Fields 22 Fields

4o GradeShest o 4 ID g lc
| = Mettods F hame ¥ TotalMarks
‘ ; 4¢ Grade
. w Display . :’ Remarks

" Si— . ) = Methods
View w CalculateGrade

Madel!

Design patterns
Design patterns are used to describe subsystems of a software architecture as well as the
relationships between them (which usually consists of several smaller architectural units)
Definition: A design pattern provides a scheme for refining the subsystems or components
of a software system, or the relationships between them. It describes a commonly-recurring
structure of communicating components that solves a general design problem within a
particular Context.
They are medium-scale patterns. They are smaller in scale than architectural patterns, but
tend to be independent of a particular programming language or programming paradigm.
Eg: Publisher-Subscriber pattern.
Idioms
Idioms deals with the implementation of particular design issues.
Definition: An idiom is a low-level pattern specific to a programming language. An idiom
describes how to implement particular aspects of components or the relationships between
them using the features of the given language.
Idioms represent the lowest- level patterns. They address aspects of both design and
implementation.
Eg: counted body pattern.

el ———————————————————— il




Object Oriented Modeling and Design 15CS55

Pattern description

« Name :The name and a short summary of the pattern
» Also known as:Other names for the pattern, if any are known
« Example :A real world example demonstrating the existence of the problem
and the need for the pattern
» Context :The situations in which the patterns may apply
* Problem :The problem the pattern addresses, including a discussion of its
associated forces.
» Solution :The fundamental solution principle underlying the pattern
« Structure :A detailed specification of the structural aspects of the pattern,
including CRC — cards for each participating component
and an OMT class diagram.
» Dynamics :Typical scenarios describing the run time behavior of the pattern
« Implementation: Guidelines for implementing the pattern. These are only a
suggestion and not a immutable rule.
« Examples resolved: Discussion for any important aspects for resolving the

example that are not yet covered in the solution , structure,

dynamics and implementation sections.

« Variants:A brief description of variants or specialization of a pattern

« Known uses:Examples of the use of the pattern, taken from existing systems

« Consequences:The benefits the pattern provides, and any potential
liabilities.

» See Also:References to patterns that solve similar problems, and the patterns
that help us refine the pattern we are describing.

Communication pattern:
Most of the today’s software systems run on distributed systems. These
distributed systems need a means for communication.
» Problems:
e Many communication mechanisms to choose from.
e The use of communication facilities is often hard-wired into existing
applications, leading to various problems.
o Difficult to change the communication mechanism later.
o Portability

Dept. of CSE. Page 139



Object Oriented Modeling and Design 15CS55

o Migration of sub systems from one network node to another is only
possible if the communication facility allows it.

» Solution:
e Loosen the coupling between components of a distributed system and the
mechanism it uses for communication, eg: by using
o Encapsulation
o Location transparency
» We discuss two patterns that addresses these topics:
o The Forwarder — Receiver design pattern (provides encapsulation)
o The Client — Dispatcher — Server design pattern (provides location
transparency)
» Keeping cooperating component consistent is another problem in communication.
We discuss one pattern that addresses this issue:
o The Publisher — Subscriber pattern

Forwarder-Receiver

Problem

Many components in a distributed
system communicate in a peer to peer
fashion.

* The communication between the peers
should not depend on a particular IPC
mechanism;

» Performance is (always) an issue; and

« Different platforms provide different
IPC mechanisms.

Forwarder-Receiver (1)

Dept. of CSE. Page 140



Object Oriented Modeling and Design 15CS55

Peer 2 Solution
service Encapsulate the inter-process
\ | communication mechanism:
Receiver Forwarder . . . .
» Peers implement application services.
receive There marshal
unmarshal deliver - Forwarders are responsible for sending
receiverMessage sendMessage
requests or messages to remote
peers
using a specific IPC mechanism.
Forwarder Receiver
] Here e *Receivers are responsible for receiving
deliver unmarshal IPC
sendMessage receiverMessage

requests or messages sent by remote

‘ | peers using a specific IPC mechanism
and dispatching the appropriate

method

of their intended receiver.

er (2)
Intent

« "The Forwarder-Receiver design pattern provides transparent interprocess
communication for software systems with a peer-to-peer interaction model.

« Itintroduces forwarders and receivers to decouple peers from the underlying
communication mechanisms."

« Motivation

» Distributed peers collaborate to solve a particular problem.

* A peer may act as a client - requesting services- as a server, providing services,
or both.

« The details of the underlying IPC mechanism for sending or receiving messages are
hidden from the peers by encapsulating all system-specific functionality into separate
components. Examples of such functionality are the mapping of names to physical
locations, the establishment of communication channels, or the marshaling and
unmarshaling of messages.

Peer 1

service

Dept. of CSE. Page 141



Object Oriented Modeling and Design 15CS55

Structure

e e

Treceived
Tunrmarshal()
=" ®rccoremsal)
e FIFC mea)
receiveldag 1
—— E.

Feaear il
ez

Reeprvited |-

. —

e Forsrardor

Firarshald
Beeliver
RaendmMeal

* F-R consists of three kinds of components, Forwarders, receivers and peers.

« Peer components are responsible for application tasks.

« Peers may be located in different process, or even on a different machine.

» It uses a forwarder to send messages to other peers and a receiver to receive
messages form other peers.

« They continuously monitor network events and resources, and listen for incoming
messages form remote agents.

« Each agent may connect to any other agent to exchange information and requests.

« To send a message to remote peer, it invokes the method sendmsg of its
forwarder.

+ It uses marshal.sendmsg to convert messages that IPC understands.

« Toreceive it invokes receivemsg method of its receiver to unmarshal it uses
unmarshal.receivemsg.

» Forwarder components send messages across peers.

* When a forwarder sends a message to a remote peer, it determines the physical
location of the recipient by using its name-to-address mapping.

» Kinds of messages are

« Command message- instruct the recipient to perform some activities.

» Information message- contain data.

* Response message- allow agents to acknowledge the arrival of a message.

Dept. of CSE. Page 142



Object Oriented Modeling and Design 15CS55

It includes functionality for sending and marshaling
Receiver components are responsible for receiving messages.
It includes functionality for receiving and unmarshaling

messages. Dynamics

P1 requests a service from a remote peer P2.
It sends the request to its forwarder forwl and specifies the name of the recipient.
Forw1 determines the physical location of the remote peer and marshals the

message.

Forwl delivers the message to the remote receiver recv2.
At some earlier time p2 has requested its receiver recv2 to wait for an incoming

request.

Now recv2 receives the message arriving from forw1.

Recv2 unmarshals the message and forwards it to its peer p2.

Meanwhile p1 calls its receiver recvl to wait for a response.

P2 performs the requested service and sends the result and the name of the

recipient p1 to the forwarder forw?2.

The forwarder marshals the result and delivers it recvl.
Recvl receives the response from p2, unmarshals it and delivers it to p1.

Implmentation

Specify a name to address mapping.-/server/cvramanserver/.....
Specify the message protocols to be used between peers and forwarders.-class

message consists of sender and data.

Choose a communication mechanism-TCP/IP sockets
Implement the forwarder.- repository for mapping names to physical addresses-

desitination Id, port no.

sendmsg( dest, marshal(the mesg))

Implement the receiver — blocking and non blocking

recvmsg() unmarshal(the msg)

Implement the peers of the application — partitioning into client and servers.
Implement a start up configuration- initialize F-R with valid name to address

mapping

Benefits and liability

Efficient inter-process communication
Encapsulation of IPC facilities

No support for flexible re-configuration of components.
Known Uses
This pattern has been used on the following systems: TASC, a software

development toolkit for factory automation systems, supports the implementation of
Forwarder-Receiver structures within distributed applications.

Dept. of CSE. Page 143



Object Oriented Modeling and Design

15CS55

» Part of the REBOOT project uses Forwarder-Receiver structures to facilitate an

efficient IPC in the material flow control software for flexible manufacturing.

« ATM-P implements the IPC between statically-distributed components using the

Forwarder-Receiver pattern..)

« In the Smalltalk environment BrouHaHa, the Forwarder-Receiver pattern is used
to implement interprocess communication.

Forwarder Recelver
marshal I recejve
| deliver unmarshal
,..‘l sendMsg receiveMsg h
sencdMsg receiveMsg
Peer1 | | Peer2
1] optional  1:1
" ™1 0S5 service
service oo ﬂ
receiveMsg sendMsg
Recelver Forwarder
| receive marshal
urmarshal “ | deliver
| receiveMsg sendMsg

Client-Dispatcher-Server

+ Goals
— Introduce an intermediate layer between clients and servers : the dispatcher
— Provide location transparency
— Hides details of establishment of communication

« Applicability
— A software system integrating a set of distributed servers, with the servers

running locally or distributed over a network.

Dept. of CSE. Page 144



Object Oriented Modeling and Design 15CS55

Client-Dispatcher-Server

+ Example

1

=
=7 Server

Dispatcher

Client [
en [ repems T;W
Hos I

+ Components

— Client
» Performs some domain-specific tasks
»  Accesses operations offered by servers
— Ask the dispatcher for a communication channel
— Send its request to the server by this channel
— Server

« Provides services to clients

» Registers itself with the dispatcher
— Dispatcher

» Establishes communications channels

* Locates servers

* (Un-)Registers servers
Maintains a map of server locations and name

Intcraction protocol

Dept. of CSE. Page 145



Object Oriented Modeling and Design 15CS55
CHent Dispatcher Server
, terService
regs r
doTask j“ : N *L]
getChannel
: = | locatesServer
—
iesmbush(:halml st acnaction
=F %
—J
2 sendRequest | crannel
i FECEIVE HEQUEST :
| funS:mrr
] -
,‘ ‘
‘ -
F—
;ns:a.hb possible
il femdany

» Component structure and inter-relationships

Client

doTask
sendRequest

requests
conmnection

requests
SETVICeE s -
returns
result | 2cceptConnection
runsService
mlp-tﬂhﬂl' receive Request
locationhlap registers
registerService accepls
unregisterServer link
locateServer | establishes
establishChannel eonnection
getChannel

Publisher-Subscriber

Bt —— g



Object Oriented Modeling and Design 15CS55

Subscriper 1

Publichar Subecriber 2

Subscriber 2

- -
p— % bl .

Fixed Subscription
Publisher f——— P

Dept. of CSE. Page 147



Object Oriented Modeling and Design 15CS55

________

Initial Subscription
Publisher P R SBecy

Publisher

Publisher-Subscriber
+ Goal
— Help to keep the state of cooperation components synchronized
— One publisher notifies any number of subscribers about changes to its state
»  Applicability
— Applications in which data changes in one pl. but many other components depend
on this data
— Number and identities of dependant components may changeover time
»  Example : graphical user interf.s
Components
» Publisher
— Maintains registry of currently-subscribed components
— Sends notification to subscribers when its state has changed
»  Subscriber
— Can use the (un)subscribe interf. of the publisher
— Retrieve changed data from publisher

Dept. of CSE. Page 148



Object Oriented Modeling and Design 15CS55

»  Push model
— Publisher sends all changed data when it notifies the subscriber
— Rigid dynamic behavior
— Poor choice for complex data changes
— Useful when subscribers need published information most of the time
*  Pull model
— Publisher only sends minimal information when sending a change notification
— Subscribers are responsible for retrieving the data they need
— Offers more flexibility but higher number of messages between publisher and
subscriber
— Useful when only individual subscribers can decide if and when they need a
specific piece of information
s Strengths
— Loosely-coupled
— Publishers are loosely coupled to subscribers
— Scalable in small installations
»  Weaknesses
— Not so scalable in large installations
— Publisher assumes that subscriber is listening
» Variants
— Gatekeeper
»  Publisher notifies remote subscribers
— Event Channel
» Strongly decouples publishers and subscribers
» Possible to have more than one publisher
»  Subscribers only wish to be notified about changes, don’t care in which
component changes occurred
» Publishers are not interested in which components are subscribing
» Event channel created and pl.d between publishers and subscribers
» Appears as a subscriber to publishers
» Appears as a publisher to subscribers
» Event channel, subscriber and publisher can be in different processes
» Can use buffers, can be chained (Unix pipes)

Dept. of CSE. Page 149



Object Oriented Modeling and Design

Fﬂshd

Proxy

Enshcr

+ Variants
— Use of Producer-Consumer style of cooperation

Producer supplies information, consumer accepts it

Strongly decoupled thanks to a buffer

Only synchronization is for buffer under/overflow

Event-Channel pattern can simulate a P-C with more than one producer

¢ Known uses
— Java Swing, GUIs

15CS55

optional
process

boundary  |Subscriber

Proxy

optional
[rOcess
boundary Event
Channel
Proxy Pto?
Subscriber lisher|

or consumer

» Interaction protocol

\

Dept. of CSE.

v

evenl

evernOccurad|

)

eventOccured()

Subscriber

Page 150



Object Oriented Modeling and Design 15CS55

Unit 8: DESIGN PATTERNS-2
syL,LABus: e 6 hr

» Management Patterns

o Command processor
o View handler
Idioms

> Introduction

» What can idioms

provide? » Idiomsand

style

» Where to find idioms
Counted pointer example

Design Patterns Management
Systems must often handle collections of objects of similar kinds, of service, or even complex
components.
E.g.1 Incoming events from users or other systems, which must be interpreted and scheduled
approximately.
e.g.2 When interactive systems must present application-specific data in a variety of different
way, such views must be handled approximately, both individually and collectively.

e Inwell-structured s/w systems, separate manager components are used to handle such
homogeneous collections of objects.

For this two design patterns are described
=  The Command processor pattern
=  The View Handler pattern

Command Processor

e The command processor design pattern separates the request for a service from its
execution. A command processor component manages requests as separate objects, schedules their
execution, and provides additional services such as the storing of request objects for later undo.

Context:

Applications that need flexible and extensible user interf.s or Applications that provides
services related to the execution of user functions, such as scheduling or undo.

Problem:

o Application needs a large set of features.

o Need a solution that is well-structured for mapping its interf. to its internal functionality

o Need to implement pop-up menus, keyboard shortcuts, or external control of application
via a scripting language

e We need to balance the following forces:

= Different users like to work with an application in different ways.

= Enhancement of the application should not break existing code.

Dept. of CSE. Page 151



Object Oriented Modeling and Design 15CS55

= Additional services such as undo should be implemented consistently for all requests.
Solution:

e Use the command processor pattern e

Encapsulate requests into objects

o Whenever user calls a specific function of the application, the request is turned into a
command object.

e The central component of our pattern description, the command processor component
takes care of all command objects.

o It schedules the execution of commands, may store them for later undo and may provide
other additional services such as logging the sequences of commands for testing purposes.
Example : Multiple undo operations in Photosho
Structure:
Command processor pattern consists of following components:
The abstract command component
A command component
The controller component
The command processor component
The supplier component

O O O O O

Components

Abstract command Component:

Defines a uniform interf. of all commands objects

At least has a procedure to execute a command

. May have other procedures for additional services as undo, logging,...

Class Collaborators
Abstract Command

Responsibility
» Defines a uniform interf. Interf.
to execute commands
« Extends the interf. for
services of the command
processor such as undo
and logging

A Command component:

. For each user function we derive a command component from the abstract command.

. Implements interf. of abstract command by using zero or more supplier
components.

. Encapsulates a function request

. Uses suppliers to perform requests

. E.g. undo in text editor : save text + cursor position

Dept. of CSE. Page 152



Object Oriented Modeling and Design 15CS55

Class Collaborators
Command . Supplier

Responsibility
» Encapsulates a
function request
* Implements interf. of
abstract command
» Uses suppliers to
perform requests

e The Controller Component:

. Represents the interf. to the application
. Accepts service requests (e.g. bold text, paste text) and creates the corresponding
command objects
. The command objects are then delivered to the command processor for execution
Class Collaborators
Controller . Command Processor
. Command

Responsibility
» Accepts service requests
 Translates requests
into Commands
* Transfer commands to
command processor

e Command processor Component:

. Manages command objects, schedule them and start their execution
. Key component that implements additional services (e.g. stores commands for later
undo)
. Remains independent of specific commands (uses abstract command interf.)
Class Collaborators
Command Processor . Abstract Command

Responsibility
« Activates command execution
« Maintains command objects
* Provides additional services
related to command execution

Dept. of CSE. Page 153



Object Oriented Modeling and Design 15CS55

The Supplier Component:

. Provides functionality required to execute concrete commands
. Related commands often share suppliers
. E.g. undo : supplier has to provide a means to save and restore its internal state
Class Collaborators
Supplier

Responsibility
« Provides application
specific functionality

Controller Command Supplier
Processor
. (A |
request Capitalize
’ ‘ Command |
\Capitalize| , ‘ ‘
Command| 1°-1t do I
>‘ -y get_selection

- >

capitalize

A

.,.
\
\
I

a

unco
request undo_it ,
o undo
reslore_lext 1
" "

v
delete

A

4

I
| |
ww/ T
The following steps occur:

The controller accepts the request from the user within its event loop and creates a
capitalize' command object.

The controller transfers the new command object to the command processor for execution
and further handling.

M



Object Oriented Modeling and Design 15CS55

The command processor activates the execution of the command and stores it for later
undo.

The capitalize command retrieves the currently-selected text from its supplier, stores the text and
its position in the document, and asks the supplier to actually capitalize the selection.

After accepting an undo request, the controller transfers this request to the command
processor.

The command processor invokes the undo procedure of the most recent command.

The capitalize command resets the supplier to the previous state, by replacing the saved
text in its original position

If no further activity is required or possible of the command, the command processor
deletes the command object.

Component structure and inter-relationships

Command pel'foyms Abstract
Processor Command
o stOrES s
command_stack do
undo
do_itlemd)
undo_it
|
transfer Command i
command Supplier
state_for_undo Uses o
Controller app_functions 1
Creates do 'T det_state
event_loop undo ! restore_state
! [
ﬁf
Strengths

= Flexibility in the way requests are activated

= Different requests can generate the same kind of command object (e.g. use GUI or
keyboard shortcuts)

= Flexibility in the number and functionality of requests

= Controller and command processor implemented independently of functionality of
individual commands

Dept. of CSE. Page 155



Object Oriented Modeling and Design 15CS55

= Easy to change implementation of commands or to introduce new ones

= Programming execution-related services

»  Command processor can easily add services like logging, scheduling,...
= Testability at application level

» Regression tests written in scripting language

= Concurrency

»  Commands can be executed in separate threads

. Responsiveness improved but need for synchronization

Weaknesses

= Efficiency loss

= Potential for an excessive number of command classes

«  Application with rich functionality may lead to many command classes

. Can be handled by grouping, unifying simple commands

= Complexity in acquiring command parameters

Variants

= Spread controller functionality

* Role of controller distributed over several components (e.g. each menu button creates a
command object)

= Combination with Interpreter pattern

»  Scripting language provides programmable interf.

»  Parser component of script interpreter takes role of controller

View Handler

+ Goals

*  Help to manage all views that a software system provides

« Allow clients to open, manipulate and dispose of views

« Coordinate dependencies between views and organizes their update

« Applicability

« Software system that provides multiple views of application specific data, or that supports
working with multiple documents

» Example : Windows handler in Microsoft Word

Dept. of CSE. Page 156



Object Oriented Modeling and Design 15CS55

® Word Fik Ecit View Insen Fomat Fom Toos Taoke J[TFFTN Work Help #

Doc.mentl 2o Wirdoaw Dacumenl

Minimizz Wirdow BN

| PRI
o0 et ke basis S tivegsher 208 Bring Al 1o Freat |_‘ am ghies ddiees th
fia by %12 New Vindow =§:2 « @é
Aange Al e L DO S
s— - Sallt L
) | J ; b - 7}2;}}.7&)9 ';la'.> 5
) G l~:-l‘f. LI T WTOT ST T I | 1 ebis ||/.',:_2:K"rr”"; 4 aee i ' 4
R 2 Dacuent
- ,""_'
‘l'
i.
[EQ pTTara g2 ptleela Gl Lame
: 3 Ao gpterengel] ne
’, 4 se st S H _s_.'nm:

e The b deL a4t WA

Lan

View Handler and other patterns
*« MVC
« View Handler pattern is a refinement of the relationship between the model and its associated
views.

« PAC

+ Implements the coordination of multiple views according to the principles of the View
Handler pattern.

« Components
= View Handler

» Is responsible for opening new views, view initialization
»  Offers functions for closing views, both individual ones and all currently-open views
» View Handlers patterns adapt the idea of separating presentation from functional core.

» The main responsibility is to Offers view management services (e.g. bring to foreground,
tile all view, clone views)

e Coordinates views according to dependencies

Dept. of CSE. Page 157



Object Oriented Modeling and Design 15CS55

Class Collaborators
View Handler * Specific View

Responsibility

¢ Opens,

manipulates, and
disposes of views of
a software system.

+« Components

= Abstract view
*  Defines common interf. for all views

*  Used by the view handler : create, initialize, coordinate, close, etc.

Class Colliaborators
Absuract View

Responsibility

* Defines an
interface to create,
initialize,
coordinate, and
close a specific
view.

« Components
» Specific view
* Implements Abstract view interf.

* Knows how to display itself

o Retrieves data from supplier(s) and change data
* Prepares data for display

* Presents them to the user

* Display function called when opening or updating a view

Dept. of CSE. Page 158



Object Oriented Modeling and Design 15CS55

Class Collaborators
Specific View * Supplier
Responsibility

* Implements the
abstract interface,

« Components
*  Supplier
=  Provides the data that is displayed by the view components

= Offers interf. to retrieve or change data

= Notifies dependent component about changes in data

Class Collaborators
Suppller * Specific View

* View e
Responsibility W Hnncier
¢ Implements the
interface of the
abstract view—one
class for each view
onto the system.

The OMT diagram that shows the structure of view handler
pattern Component structure and inter-relationships

Dept. of CSE. Page 159



Object Oriented Modeling and Design 15CS55

ViewHandler | creates, closes, and AbstractView
coordinates
myViews display
update
update (nitialize
open open
Jose dose
top move
split slze
clone
- A
[ |
SpecificViewA SpecificViewB
display display
Inull‘.mzc mlﬁ;allm:
update u e
notifies 0{::; u‘)c-n
¢ c‘o:c
Supplier move move
size size
attach
detach +1 retrieves retrieves
getData data data
setData notifles
TR

L

Two scenarios to illustrate the behavior of the View Handler

» View creation

= View tiling
Both scenarios assume that each view is displayed in its own window.

Scenario | : View creation

Shows how the view handler creates a new view. The scenario comprises four phases:

= A client-which may be the user or another component of the system-calls the view
handler to open a particular view.

= The view handler instantiates and initializes the desired view. The view registers with the
change-propagation mechanism of its supplier, as specified by the Publisher-Subscriber pattern.

» The view handler adds the new view to its internal list of open views.

= The view handler calls the view to display itself. The view opens a new window,
retrieves data from its supplier, prepares this data for display, and presents it to the user.
Interaction protocol

Dept. of CSE. Page 160



Object Oriented Modeling and Design 15CS55

View Handler l PRPPHSK
open(view) T View w

- —

initialize

— register
M—
|- = [~
| add

View |

open |
- display
getDarta

- > |
]

Scenario Il : View Tiling
Illustrates how the view handler organizes the tiling of views. For simplicity, we assume
that only two views are open. The scenario is divided into three phases:

= The user invokes the command to tile all open windows. The request is sent to the view
handler.

= For every open view, the view handler calculates a new size and position, and calls its
resize and move procedures.

= Each view changes its position and size, sets the corresponding clipping area, and refreshes
the image it displays to the user. We assume that views cache the image they display. If this is not
the case, views must retrieve data from their associated suppliers

Interaction protocol

Dept. of CSE. Page 161



Object Oriented Modeling and Design 15CS55

View Handler View-1 View-2

tile

E calcTiling

~—J resize

—

-
move

-
slze

- > |
move

|-

‘v—
|

Implementation
The implementation of a View Handler structure can be divided into four steps. We assume that
the suppliers already exist, and include a suitable change-propagation mechanism.

1. Identify the views.
2. Specify a common interf. for all views.
3. Implement the views.
4. Define the view handler
Identify the views. Specify the types of views to be provided and how the user controls each
individual view.
Specify a common interf. for all views. This should include functions to open, close,
display, update, and manipulate a view. The interf. may also offer a function to initialize a view.
The public interf. includes methods to open, close, move, size, drag, and update a view, as
well as an initialization method.
Implementation

Dept. of CSE. Page 162



Object Oriented Modeling and Design

class AbstractView |
protected:
// Draw the view
virtual void displayData() = 0;

virtual void displayWindow (Rectangle boundary) = 0;

virtual void eraseWindow() = 0;

public:
// Constructor and Destructor
AbstractView() {}:
~AbstractView() [};
J// Initialize the view
vold initializel) = 0;

// View handling with default implementation

virtual void open(Rectangle boundary) |
virtual void close() { /* ... */ };
virtual void move(Point point) { /+

virtual void size(Rectangle boundary) { /+*
virtual void drag(Rectangle boundary) { /*

virtual void update() ( /* ... */ };
)3

Implement the views. Derive a separate class from the AbtrsactView class for each specific type
of view identified in step 1. Implement the view-specific parts of the interf., such as the
displayData () method in our example. Override those methods whose default implementation

does not meet the requirements of the specific view.

28

15CS55

In our example we implement three view classes: Editview, Layoutview, and

Thumbnailview, as specified in the solution section.

Define the view handler: Implement functions for creating views as Factory Methods.

The view handler in our example document editor provides functions to open and close
views, as well as to tile them, bring them to the foreground, and clone them. Internally the view

handler maintains references to all open views, including information about their position and size,

and whether they are iconize.
clags ViewHandler (
// Data structures
struct ViewInfo |{
AbstractView* view;
Rectangle boundary;
bool iconized;
)t

Dept. of CSE.

Page 163



Object Oriented Modeling and Design 15CS55

Cortalner<Viewlnfo*> myViews;
// The singleton instance
gtatic ViewHand er* theViewHand:er;
/| Constructor amd Des:ructor
ViewHandler();
~ViewHandler();
aublic:
!/ Einglaton eonstructor
static ' ewHandler* makaViewHandler();

! Cpen and cloae views
volc Opan|AbstractViewt view);
vold elose MbstractViewr view):

!/ Tep, clore, and tile views
voLd top(bstrac:Viewt view);
void clome); // Clenes he top-most visw
vo:d tile(];

void Viewandler: openView(Abetrac:Viewt view):
ViewTrfor  wiewlnfo = new VievInfel);

/1 ME the view to the Ziat of opan views
visulrfo- dvies = yigws
viswIrfo-roourdasy = Jefault3ndary;
viglnfo sizorized = falee;
myiiews. ald (vievinfol;

{f Initialize the view and open It
view->initializel);
tlew-2open (defaul thecndary)

Strengths
O Uniform handling of views
= All views share a common interf.
= Extensibility and changeability of views
=  New views or changes in the implementation of one view don’t affect other component
= Application-specific view coordination

Dept. of CSE. Page 164



Object Oriented Modeling and Design 15CS55

=  Views are managed by a central instance, so it is easy to implement specific view
coordination strategies (e.g. order in updating views)

Weaknesses

=Efficiency loss (indirection)

= Negligible

= Restricted applicability : useful only with

= Many different views

= Views with logical dependencies

= Need of specific view coordination strategies

Variant

= View Handler with Command objects

= Uses command objects to keep the view handler independent of specific view interf.

= |Instead of calling view functionality directly, the view handler creates an appropriate
command and executes it

Known uses

= Macintosh Window Manager

= Window allocation, display, movement and sizing

= |Low-level view handler : handles individual window

Microsoft Word

o

= Window cloning, splitting, tiling...

Idioms

Introduction

> idioms are low-level patterns specific to a programming language

> An idiom describes how to implement particular aspects of components or the
relationships between them with the features of the given language.

»  Here idioms show how they can define a programming style, and show where you can
find idioms.

» A programming style is characterized by the way language constructs are used to
implement a solution, such as the kind of loop statements used, the naming of program elements,
and even the formatting of the source code

What Can Idioms Provide?

Dept. of CSE. Page 165



Object Oriented Modeling and Design 15CS55

» Asingle idiom might help you to solve a recurring problem with the programming
language you normally use.

»  They provide a vehicle for communication among software developers.(because each
idiom has a unique name)

»  idioms are less 'portable‘ between programming languages
Idioms and Style

If programmers who use different styles form a team, they should agree on a single coding style
for their programs. For example, consider the following sections of C/C++ code, which both
implement a string copy function for 'C-style’ string

void strcopyRR(char *d, const char *s)

{while (*d++=*s++) ; }

void strcopyPascal (chard [ I, const char s [l)

{inti;
for (=0:sil'="\O1:i=i+1)
{dlil=sTi]; }

d[i] = “\0’ ; /* always asign 0 character */
}/* END of strcopyPascal */
Idioms and Style

A program that uses a mixture of both styles might be much harder to understand and
maintain than a program that uses one style consistently.

Corporate style guides are one approach to achieving a consistent style throughout
programs developed by teams.

Style guides that contain collected idioms work better. They not only give the rules, but
also provide insight into the problems solved by a rule. They name the idioms and thus allow them
to be communicated.

Idioms from conflicting styles do not mix well if applied carelessly to a program. Different
sets of idioms may be appropriate for different domains. example, you can write C++ programs in
an object-oriented style with inheritance and dynamic binding.

In real time system dynamic binding is not used which is required.

A single style guide can therefore be unsuitable for large companies that employ many
teams to develop applications in different domains.

A coherent set of idioms leads to a consistent style in your programs.

Dept. of CSE. Page 166



Object Oriented Modeling and Design 15CS55

Here is an example of a style guide idiom from Kent Beck's Smalltalk Best Practice Patterns :

Name : Indented Control Flow
Problem : How do you indent messages?
Solution : Put zero or one argument messages on the same lines as their receiver.
foo isNil
2+3
a<bifTrue:[...]

Put the keyword/argument pairs of messages with two or more keywords each on its own line,
indented one tab.
a<b

ifTrue: [...]

ifFalse: [.. .1

» Different sets of idioms may be appropriate for different domains.

> For example, you can write C++ programs in an object-oriented style with inheritance
and dynamic binding.

> Insome domains. such as real-time systems, a more ‘efficient' style that does not use
dynamic binding is required.

» Asingle style guide can therefore be unsuitable for large companies that employ many
teams to develop applications in different domains.

»  Astyle guide cannot and should not cover a variety of styles.
Where Can You Find Idioms?

» Idioms that form several different coding styles in C++ can be found for example in
Coplien's Advanced C++ Barton and Neck man's Scientific and Engineering C++ and Meyers*

Effective C++ .

» You can find a good collection of Smalltalk programming wisdom in the idioms
presented in Kent Beck's columns in the Smalltalk Report.

» His collection of Smalltalk Best Practice Patterns is about to be published as a book .

»  Beck defines a programming style with his coding patterns that is consistent with the
Smalltalk class library, so you can treat this pattern collection as a Smalltalk style guide.

Dept. of CSE. Page 167






